Skip to main content

Selecting the “Right” Mouse Model for Metabolic Syndrome and Type 2 Diabetes Research

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 560))

Summary

This is not a “Methods” chapter in the traditional sense. Rather, it is an essay designed to help address one of the most frequently asked questions by investigators about to embark on a study requiring an animal model of diabetes - what is the “right” model for the reader’s specific research application. Because genetic heterogeneity and the requirement for complex gene-environment interaction characterize the various mouse models of Type 2 diabetes as well as the human disease manifestations, the readers may come to share the author’s conclusion that more than one model is required if the investigator is interested in knowing how broadly effective a given compound with putative therapeutic efficacy might be.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Breyer MD, Bottinger E, Brosius FC, et al. (2005). Diabetic nephropathy: of mice and men. Adv Chronic Kidney Dis 12 (2): 128–145

    Article  PubMed  Google Scholar 

  2. Odom DT, Dowell RD, Jacobsen ES, et al. (2007). Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39(6): 730–732

    Article  PubMed  CAS  Google Scholar 

  3. Pelleymounter MA, Cullen MJ, Healy D, et al. (1998). Efficacy of exogenous recombinant murine leptin in lean and obese 10- to 12-mo-old female CD-1 mice. Am J Physiol 275(4 Pt 2): R950–R959

    PubMed  CAS  Google Scholar 

  4. Mathews CE, Leiter EH. (2004). Rodent models of spontaneous diabetes. In: Kahn CR, Weir GC, King GL, Jacobson AM, Moses AC, Smith RJ, editors. Joslin’s Diabetes Mellitus. 14th ed. Philadelphia, PA: Lippincott Williams & Wilkins; pp. 291–327

    Google Scholar 

  5. Ueda H, Ikegami H, Kawaguchi Y, et al. (2000). Age-dependent changes in phenotypes and candidate gene analysis in a polygenic animal model of Type II diabetes mellitus; NSY mouse. Diabetologia 43: 932–938

    Article  PubMed  CAS  Google Scholar 

  6. Makino S, Yamashita H, Kunimoto K, et al. (1992). Breeding of the NON mouse and its genetic characteristics. In: Sakamoto N, Hotta N, Uchida K, editors. Current Concepts of a New Animal Model: The NON Mouse. Tokyo: Elsevier Science Publishers B. V.; pp. 4–10

    Google Scholar 

  7. Svenson KL, Von Smith R, Magnani PA, et al. (2007). Multiple trait measurements in 43 inbred mouse strains captures the phenotypic diversity characteristic of human populations. J Appl Physiol 102(6): 2369–2378

    Article  PubMed  CAS  Google Scholar 

  8. Herberg L, Leiter EH. (2001). Obesity/diabetes in mice with mutations in the leptin or leptin receptor genes. In: Sima AAF, Shafrir E, editors. Animal Models of Diabetes: A Primer. Amsterdam: Harwood Academic Publishers; pp. 63–107

    Google Scholar 

  9. Leiter EH, Herberg L. (1997). The polygenetics of diabesity in mice. Diabetes Rev 5(2): 131–148

    Google Scholar 

  10. Freeman H, Shimomura K, Horner E, et al. (2006). Nicotinamide nucleotide transhydrogenase: a key role in insulin secretion. Cell Metab 3(1): 35–45

    Article  PubMed  CAS  Google Scholar 

  11. Freeman HC, Hugill A, Dear NT, et al. (2006). Deletion of nicotinamide nucleotide transhydrogenase: a new quantitative trait locus accounting for glucose intolerance in C57BL/6J mice. Diabetes 55(7): 2153–2156

    Article  PubMed  CAS  Google Scholar 

  12. Chua Jr. S, Herberg L, Leiter EH. (2007). Obesity/diabetes in mice with mutations in the leptin or leptin receptor genes. In: Shafrir E, editor. Animal Models of Diabetes: Frontiers in Research. Boca Raton: CRC-Taylor and Francis Press; pp. 61–102

    Google Scholar 

  13. Togawa K, Moritani M, Yaguchi H, et al. (2006). Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice. Hum Mol Genet 15(1): 113–128

    Article  PubMed  CAS  Google Scholar 

  14. Clee SM, Attie AD. (2007). The genetic landscape of type 2 diabetes in mice. Endocr Rev 28(1): 48–83

    Article  PubMed  CAS  Google Scholar 

  15. Collin GB, Maddatu TP, Sen S, et al. (2005). Genetic modifiers interact with Cpefat to affect body weight, adiposity, and hyperglycemia. Physiol Genomics 22: 182–190

    Article  PubMed  CAS  Google Scholar 

  16. Coleman DL. (1978). Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14: 141–148

    Article  PubMed  CAS  Google Scholar 

  17. Naggert JK, Mu M-L, Frankel WF, et al. (1995). Genomic analysis of the C57BL/Ks mouse strain. Mammal. Genome 6: 131–133

    Article  CAS  Google Scholar 

  18. Clee SM, Yandell BS, Schueler KM, et al. (2006). Positional cloning of Sorcs1, a type 2 diabetes quantitative trait locus. Nat Genet 38(6): 688–693

    Article  PubMed  Google Scholar 

  19. Luo N, Liu SM, Liu H, et al. (2006). Allelic variation on chromosome 5 controls beta cell mass expansion during hyperglycemia in leptin receptor deficient diabetes mice. Endocrinology 147: 2287–2295

    Article  PubMed  CAS  Google Scholar 

  20. Reifsnyder PC, Churchill G, Leiter EH. (2000). Maternal environment and genotype interact to establish diabesity in mice. Genome Res 10(10): 1568–1578

    Article  PubMed  CAS  Google Scholar 

  21. Fam BC, Andrikopoulos S. (2007). The New Zealand obese mouse: polygenic model of obesity, glucose intolerance, and the metabolic syndrome. In: Shafrir E, editor. Animal Models of Diabetes: Frontiers in Research, 2nd edn. Boca Raton: CRC Press, Taylor & Francis Group; pp. 139–158

    Chapter  Google Scholar 

  22. Ortlepp JR, Kluge R, Giesen K, et al. (2000). A metabolic syndrome of hypertension, hyperinsulinaemia and hypercholesterolaemia in the New Zealand obese mouse. Eur J Clin Invest 30(3): 195–202

    Article  PubMed  CAS  Google Scholar 

  23. Jurgens HS, Neschen S, Ortmann S, et al. (2007). Development of diabetes in obese, insulin-resistant mice: essential role of dietary carbohydrate in beta cell destruction. Diabetologia 50(7): 1481–1489

    Article  PubMed  CAS  Google Scholar 

  24. Qiao JH, Xie PZ, Fishbein MC, et al (1994). Pathology of atheromatous lesions in inbred and genetically engineered mice. Genetic determination of arterial calcification. Arterioscler Thromb 14(9): 1480–1497

    Article  PubMed  CAS  Google Scholar 

  25. Leiter EH, Lee CH. (2005). Mouse models and the genetics of diabetes: is there evidence for genetic overlap between type 1 and type 2 diabetes? Diabetes 54(Suppl 2): S151–S158

    Article  PubMed  CAS  Google Scholar 

  26. Reifsnyder PC, Leiter EH. (2002). Deconstructing and reconstructing obesity-induced diabetes (diabesity) in mice. Diabetes 51(3): 825–832

    Article  PubMed  CAS  Google Scholar 

  27. Pan H-J, Reifsnyder PC, Vance DE, et al. (2005). Pharmacogenetic analysis of rosiglitazone-induced hepatosteatosis in new mouse models of type 2 diabetes. Diabetes 54(6): 1854–1862

    Article  PubMed  CAS  Google Scholar 

  28. Kim JH, Stewart TP, Soltani-Bejnood M, et al. (2006). Phenotypic characterization of polygenic type 2 diabetes in TALLYHO/JngJ mice. J Endocrinol 191(2): 437–446

    Article  PubMed  CAS  Google Scholar 

  29. Kim JH, Sen S, Avery CS, et al. (2001). Genetic analysis of a new mouse model for non-insulin-dependent diabetes. Genomics 74(3): 273–286

    Article  PubMed  CAS  Google Scholar 

  30. Leiter EH, Reifsnyder PC. (2004). Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes 53(Suppl 1): S4–S11

    Article  PubMed  CAS  Google Scholar 

  31. Leiter EH, Reifsnyder PC, Zhang W, et al. (2006). Differential endocrine responses to rosiglitazone therapy in new mouse models of type 2 diabetes. Endocrinology 147(2): 919–926

    Article  PubMed  CAS  Google Scholar 

  32. Cho YR, Kim HJ, Park SY, et al. (2007). Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 293(1): E327–E336

    Article  PubMed  CAS  Google Scholar 

  33. Kim JH, Stewart TP, Zhang W, et al. (2005). The Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity. Physiol Genomics 22(2): 171–181

    Article  PubMed  CAS  Google Scholar 

  34. LeRoith D, Gavrilova O. (2006). Mouse models created to study the pathophysiology of Type 2 diabetes. Int J Biochem Cell Biol 38(5-6): 904–912

    Article  PubMed  CAS  Google Scholar 

  35. Kadowaki T. (2000). Insights into insulin resistance and type 2 diabetes from knockout mouse models. J Clin Invest 106(4): 459–465

    Article  PubMed  Google Scholar 

  36. Kulkarni RN, Almind K, Goren HJ, et al. (2003). Impact of genetic background on development of hyperinsulinemia and diabetes in insulin receptor/insulin receptor substrate-1 double heterozygous mice. Diabetes 52(6): 1528–1534

    Article  PubMed  CAS  Google Scholar 

  37. Leiter EH. (2002). Mice with targeted gene disruptions or gene insertions for diabetes research: problems, pitfalls, and potential solutions. Diabetologia 45(3): 296–308

    Article  PubMed  CAS  Google Scholar 

  38. Lee JY, Ristow M, Lin X, et al. (2006). RIP-Cre revisited, evidence for impairments of pancreatic beta-cell function. J Biol Chem 281(5): 2649–2653

    Article  PubMed  CAS  Google Scholar 

  39. Semprini S, Troup TJ, Kotelevtseva N, et al. (2007). Cryptic loxP sites in mammalian genomes: genome-wide distribution and relevance for the efficiency of BAC/PAC recombineering techniques. Nucleic Acids Res 35(5): 1402–1410

    Article  PubMed  CAS  Google Scholar 

  40. Leiter EH, Reifsnyder PC, Driver J, et al. (2007). Unexpected functional consequences of xenogeneic transgene expression in beta cells of NOD mice. Diabetes Obes Metab 9(Suppl 1): 14–22

    Article  PubMed  CAS  Google Scholar 

  41. Leiter EH, Coleman DL, Eisenstein AB, et al. (1981). Dietary control of diabetes pathogenesis in C57BL/KsJ-db/db diabetes mice. Metabolism 30: 554–562

    Article  PubMed  CAS  Google Scholar 

  42. Leiter EH, Coleman DL, Ingram DK, et al. (1983). Influence of dietary carbohydrate on the induction of diabetes in C57BL.KsJ-db/db diabetes mice. J Nutr 113: 184–195

    PubMed  CAS  Google Scholar 

  43. Surwit RS, Feinglos MN, Rodin J, et al. (1995). Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44(5): 645–651

    Article  PubMed  CAS  Google Scholar 

  44. Turnbaugh PJ, Ley RE, Mahowald MA, et al. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122): 1027–1031

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward H. Leiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Leiter, E.H. (2009). Selecting the “Right” Mouse Model for Metabolic Syndrome and Type 2 Diabetes Research. In: Stocker, C. (eds) Type 2 Diabetes. Methods in Molecular Biology, vol 560. Humana Press. https://doi.org/10.1007/978-1-59745-448-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-448-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-15-2

  • Online ISBN: 978-1-59745-448-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics