Skip to main content

Small Blood Vessel Engineering

  • Protocol
Book cover Tissue Engineering

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 140))

Summary

Tissue engineering has attracted wide interest as a potential method to alleviate the shortage of transplantable organs (1). To date, almost all of the successfully engineered tissues/organs have relatively thin and/or avascular structures [e.g., skin (2), cartilage (3), and bladder (4), where postimplantation vascularization from the host (angiogenesis) is sufficient to meet the implant’s demand for oxygen and nutrients. Vascularization remains a critical obstacle impeding attempts to engineer thicker, metabolically demanding organs, such as heart and liver. One approach in vascularizing an engineered tissue is to add the cellular components of blood vessels (endothelial and perivascular cells) directly to the tissue–engineered construct. We have shown that coimplanting endothelial cells and perivascular cells in a scaffold in vivo can lead to the formation of a vascular network that anastomoses to the host circulatory system. The engineered vessels are stable and functional, and they persist for more than 1 year in vivo. This approach may potentially lead to the creation of a well–vascularized–engineered tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vacanti, J. P. and Langer, R. (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354(Suppl. 1), SI32–SI34.

    Google Scholar 

  2. Compton, C. C., Butler, C. E., Yannas, I. V., Warland, G., and Orgill, D. P. (1998) Organized skin structure is regenerated in vivo from collagen– GAG matrices seeded with autologous keratinocytes. J. Invest. Dermatol. 110, 908–916.

    Article  CAS  Google Scholar 

  3. Vunjak–Novakovic, G., Obradovic, B., Martin, I., Bursac, P. M., Langer, R., and Freed, L. E. (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Prog. 14, 193–202.

    Article  Google Scholar 

  4. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., and Retik, A. B. (2006) Tissue–engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241–1246.

    Article  Google Scholar 

  5. Jain, R. K., Au, P., Tam, J., Duda, D. G., and Fukumura, D. (2005) Engineering vascularized tissue. Nat. Biotechnol. 23, 821–823.

    Article  CAS  Google Scholar 

  6. Blau, H. M. and Banfi, A. (2001) The well–tempered vessel. Nat. Med. 7, 532–534.

    Article  CAS  Google Scholar 

  7. Levenberg, S., Rouwkema, J., Macdonald, M., Garfein, E. S., Kohane, D. S., Darland, D. C., Marini, R., van Blitterswijk, C. A., Mulligan, R. C., D’Amore, P. A., and Langer, R. (2005) Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 23,879–884.

    Article  CAS  Google Scholar 

  8. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J. S., and Jain, R. K. (2004) Tissue engineering: creation of long–lasting blood vessels.Nature 428, 138–139.

    Article  CAS  Google Scholar 

  9. Wang, Z. Z., Au, P., Chen, T., Shao, Y., Daheeon, L. M., Bai, H., Arzigian, M., Fukumura, D., Jain, R. K., Scadden, D. T. (2007) Endothelial cells derived from embryonic stem cells form durable blood vessels in vivo. Nat. Biotechnol. 25, 317–318.

    Article  CAS  Google Scholar 

  10. Jain R. K., Booth, M. F., Padera T. P., Munn L. L., Fukumura D., Brown, E. (in press) Applications of Non–Linear Intravital Microscopy, in Handbook of Biological Nonlinear Optical Microscopy (So, P., Masters, B., eds), Oxford University Press, Oxford, UK.

    Google Scholar 

  11. Jain, R. K. (2003) Molecular regulation of vessel maturation. Nat. Med. 9, 685–693.

    Article  CAS  Google Scholar 

  12. Yuan, F., Leunig, M., Berk, D. A., and Jain, R. K. (1993) Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice. Microvasc. Res. 45, 269–289.

    Article  CAS  Google Scholar 

  13. Yang, S., Grahm, J., Kahn, J. W., Schwartz, E. A., Gereitsen, M. E., (1999) Functional coles for PECAM–1 (C031) and VE–Cadherin (CD144) in tube assembly and Lumen formation in three–dimensional collagen gels. Am J. Pathol. 155, 887–895.

    Article  CAS  Google Scholar 

  14. Monsky, W. L., Fukumura, D., Gohongi, T., Ancukiewcz, M., Weich, H. A., Torchilin, V. P., Yuan, F., and Jain, R. K. (1999) Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 59, 4129–4135.

    CAS  Google Scholar 

  15. Yuan, F., Salehi, H. A., Boucher, Y., Vasthare, U. S., Tuma, R. F., and Jain, R. K. (1994) Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows. Cancer Res. 54, 4564–4568.

    CAS  Google Scholar 

  16. Dellian, M., Witwer, B. P., Salehi, H. A., Yuan, F., and Jain, R. K. (1996) Quantitation and physiological characterization of angiogenic vessels in mice: effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am. J. Pathol. 149, 59–71.

    CAS  Google Scholar 

  17. Fukumura, D., Gohongi, T., Kadambi, A., Izumi, Y., Ang, J., Yun, C. O., Buerk, D. G., Huang, P. L., and Jain, R. K., Huang, P. L., and Jain, R. K. (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor–induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. U. S. A. 98, 2604–2609.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Program Project Grant (P01CA80134) and Bioengineering Research Partnership Grant (R01 CA85140) to R. K. J. and D. F., an R01 Grant (CA96915) to D. F., and American Heart Association Pre–doctoral Fellowship to P. A.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc.

About this protocol

Cite this protocol

Au, P., Tam, J., Fukumura, D., Jain, R.K. (2008). Small Blood Vessel Engineering. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicine™, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics