Skip to main content

Studying the Structure of Microtubules by Electron Microscopy

  • Protocol
Book cover Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

Although the structures of individual proteins and moderately sized complexes of proteins may be investigated by X-ray crystallography, the interaction between a long polymer, such as a microtubule, and other protein molecules, such as the motor domain of kinesin, need to be studied by electron microscopy. We have used electron cryo-microscopy and image analysis to study the structures of microtubules with and without bound kinesin motor domains and the changes that take place when the motor domains are in different nucleotide states. Among the microtubules that assemble from pure tubulin, we select a minor subpopulation that has perfect helical symmetry, which are the best for three-dimensional reconstruction. Gold labeling can be used to mark the positions of certain regions of protein sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amos, L. A. and Schlieper, D. (2005) Microtubules and MAPs. Adv. Protein Chem. 71, 257–298.

    Article  CAS  PubMed  Google Scholar 

  2. Arnal, I. and Wade, R. H. (1998) Nucleotide-dependent conformations of the kinesin dimer interacting with microtubules. Structure 6, 33–38.

    Article  CAS  PubMed  Google Scholar 

  3. Dias, D. P. and Milligan, R. A. (1999) Motor protein decoration of microtubules grown in high salt conditions reveals the presence of mixed lattices. J. Mol. Biol. 287, 287–292.

    Article  CAS  PubMed  Google Scholar 

  4. Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1995) Nucleotide-dependent angular change in kinesin motor domain bound to tubulin. Nature 376, 277–279.

    Article  CAS  PubMed  Google Scholar 

  5. Hirose, K., Lockhart, A., Cross, R. A., and Amos, L. A. (1996) Three-dimensional cryoelectron microscopy of dimeric kinesin and ncd motor domains on microtubules. Proc. Natl. Acad. Sci. USA 93, 9539–9544.

    Article  CAS  PubMed  Google Scholar 

  6. Hirose, K., Cross, R. A., and Amos, L. A. (1998) Nucleotide-dependent structural changes in dimeric ncd molecules complexed to microtubules. J. Mol. Biol. 278, 389–400.

    Article  CAS  PubMed  Google Scholar 

  7. Hirose, K., Löwe J., Alonso M., Cross R. A., and Amos L. A. (1999) Congruent docking of dimeric kinesin and ncd into 3D electron cryo-microscopy maps of microtubule-motor.ADP complexes. Mol. Biol. Cell 10, 2063–2074.

    CAS  PubMed  Google Scholar 

  8. Hirose, K., Henningsen, U., Schliwa, M., et al. (2000) Structural comparison of dimeric Eg5, Neurospora kinesin (Nkin) and Ncd head-Nkin neck chimaera with conventional kinesin. EMBO J. 19, 5308–5314.

    Article  CAS  PubMed  Google Scholar 

  9. Hoenger, A., Sablin, E. P., Vale, R. D., Fletterick, R. J., and Milligan, R. A. (1995) Three-dimensional structure of a tubulin-motor-protein complex. Nature 376, 271–274.

    Article  CAS  PubMed  Google Scholar 

  10. Kikkawa, M., Ishikawa, T., Wakabayashi, T., and Hirokawa, N. (1995) 3-Dimensional structure of the kinesin head-microtubule complex. Nature 376, 274–277.

    Article  CAS  PubMed  Google Scholar 

  11. Kikkawa, M., Okada Y., and Hirokawa N. (2000) 15 angstrom resolution model of the monomeric kinesin motor, KIF1A. Cell 100, 241–252.

    Article  CAS  PubMed  Google Scholar 

  12. Kikkawa, M., Sablin, E. P., Okada, Y., Yajima, H., Fletterick, R. J., and Hirokawa, N. (2001) Switch-based mechanism of kinesin motors. Nature 411, 439–445.

    Article  CAS  PubMed  Google Scholar 

  13. Rice, S., Lin, A. W., Safer, D., et al. (1999) A structural change in the kinesin motor protein that drives motility. Nature 402, 778–784.

    Article  CAS  PubMed  Google Scholar 

  14. Skiniotis, G., Cochran, J. C., Muller, J., Mandelkow, E., Gilbert, S. P., and Hoenger, A. (2004) Modulation of kinesin binding by the C-termini of tubulin. EMBO J. 23, 989–999.

    Article  CAS  PubMed  Google Scholar 

  15. Skiniotis, G., Surrey, T., Altmann, S., et al. (2003) Nucleotide-induced conformations in the neck region of dimeric kinesin. EMBO J. 22, 1518–1528.

    Article  CAS  PubMed  Google Scholar 

  16. Song, Y. H., Marx, A., Muller, J., et al. (2001) Structure of a fast kinesin: implications for ATPase mechanism and interactions with microtubules. EMBO J. 20, 6213–6125.

    Article  CAS  PubMed  Google Scholar 

  17. Sosa, H., Dias, D. P., Hoenger, A., et al. (1997) A model for the microtubule-Ncd motor protein complex obtained by cryo-electron microscopy and image analysis. Cell 90, 217–224.

    Article  CAS  PubMed  Google Scholar 

  18. Wendt, T. G., Volkmann, N., Skiniotis, G., et al. (2002) Microscopic evidence for a minus-end-directed power stroke in the kinesin motor ncd. EMBO J. 21, 5969–5978.

    Article  CAS  PubMed  Google Scholar 

  19. Kar, S., Fan, J., Smith, M. J., Goedert, M., and Amos, L. A. (2003) Repeat motifs of tau bind to the insides of microtubules in the absence of taxol. EMBO J. 22, 70–77.

    Article  CAS  PubMed  Google Scholar 

  20. Moores, C. A., Perderiset, M., Francis, F., Chelly, J., Houdusse, A., and Milligan, R. A. (2004) Mechanism of microtubule stabilization by doublecortin. Mol. Cell 14, 833–839.

    Article  CAS  PubMed  Google Scholar 

  21. Li, H., DeRosier, D., Nicholson, W., Nogales, E., and Downing, K. (2002) Microtubule structure at 8Å resolution. Structure 10, 1317–1328.

    Article  CAS  PubMed  Google Scholar 

  22. Kikkawa, M. (2004) A new theory and algorithm for reconstructing helical structures with a seam. J. Mol Biol. 343, 943–955.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, H.-W., and Nogales, E. (2005) Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly. Nature 435, 911–915.

    Article  CAS  PubMed  Google Scholar 

  24. Hyman, A. A., Salser, S., Drechsel, D. N., Unwin, N., and Mitchison, T. J. (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol. Biol. Cell 3, 1155–1167.

    CAS  PubMed  Google Scholar 

  25. Castoldi, M., and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88.

    Article  CAS  PubMed  Google Scholar 

  26. Ray, S., Meyhöfer, E., Milligan, R. A., and Howard, J. (1993) Kinesin follows the microtubule’s protofilament axis. J. Cell Biol. 121, 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  27. Harrison, B. C., Marchese-Ragona, S. P., Gilbert, S. P., Cheng, N., Steven, A. C., and Johnson, K. A. (1993) Decoration of the microtubule surface by one kinesin head per tubulin heterodimer. Nature 362, 73–75

    Article  CAS  PubMed  Google Scholar 

  28. Lockhart, A., Crevel, I. M., and Cross, R. A. (1995) Kinesin and ncd bind through a single head to microtubules and compete for a shared MT binding site. J. Mol. Biol. 249, 763–771.

    Article  CAS  PubMed  Google Scholar 

  29. Smith, M. J., Crowther, R. A., and Goedert, M. (2000) The natural osmolyte trimethylamine N-oxide (TMAO) restores the ability of mutant tau to promote microtubule assembly. FEBS Lett. 484, 265–270.

    Article  CAS  PubMed  Google Scholar 

  30. Tseng, H. C. and Graves, D. J. (1998) Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules. Biochem. Biophys. Res. Commun. 250, 726–730.

    Article  CAS  PubMed  Google Scholar 

  31. Fukami, A., and Adachi, K. (1965) A new method of preparation of a self-perforated micro plastic grid and its application. J. Electron Microsc. 14, 112–118.

    CAS  Google Scholar 

  32. Carragher, B., Fellmann, D., Guerra, F., et al. (2004) Rapid routine structure determination of macromolecular assemblies using electron microscopy: current progress and further challenges. J. Synchrotron Radiat. 11, 83–85.

    Article  CAS  PubMed  Google Scholar 

  33. Meurer-Grob, P., Kasparian, J., and Wade, R. H. (2001) Microtubule structure at improved resolution. Biochemistry 40, 8000–8008.

    Article  CAS  PubMed  Google Scholar 

  34. Song, H. and Endow, S. A. (1998) Decoupling of nucleotide-and microtubule-binding sites in a kinesin mutant. Nature 396, 587–590.

    Article  CAS  PubMed  Google Scholar 

  35. DeRosier, D. J. and Moore, P. B. (1970) Reconstruction of three dimensional images from electron micrographs of structures with helical symmetry. J. Mol. Biol. 52, 355–369.

    Article  CAS  PubMed  Google Scholar 

  36. Crowther, R. A., Henderson, R., and Smith, J. M. (1996) MRC image processing programs. J. Struct. Biol. 116, 9–16.

    Article  CAS  PubMed  Google Scholar 

  37. Yonekura, K., Toyoshima, C., Maki-Yonekura, S., and Namba, K. (2003) GUI programs for processing individual images in early stages of helical image reconstruction—for high-resolution structure analysis. J. Struct. Biol. 144, 184–194.

    Article  PubMed  Google Scholar 

  38. Toyoshima, C. and Unwin, N. (1990) Three-dimensional structure of the acetylcholine receptor by cryoelectron microscopy and helical image reconstruction. J. Cell Biol. 111, 2623–2635.

    Article  CAS  PubMed  Google Scholar 

  39. Egelman, E. H. (1986) An algorithm for straightening images of curved filamentous structures. Ultramicroscopy 19, 367–373.

    Article  CAS  PubMed  Google Scholar 

  40. Moody, M. F. (1990) Image analysis of electron micrographs, in Biophysical Electron Microscopy, (Hawkes, P. W. and Valdrè, U., ed.), Academic Press, New York, pp. 145–287.

    Google Scholar 

  41. Wriggers, W. and Birnens, S. (2001) Using situs for flexible and rigid-body fitting of multiresolution single-molecule data. J. Struct. Biol. 133, 193–202.

    Article  CAS  PubMed  Google Scholar 

  42. Roseman, A. M. (2000) Docking structures of domains into maps from cryo-electron microscopy using local correlation. Acta Cryst. D 56, 1332–1340.

    Article  CAS  Google Scholar 

  43. Volkmann, N., and Hanein, D. (2003) Docking of atomic models into reconstructions from electron microscopy. Methods Enzymol. 374, 204–225.

    Article  CAS  PubMed  Google Scholar 

  44. Nogales, E., Wolf, S., and Downing, K. H. (1998) Structure of the tubulin dimer by electron crystallography. Nature 391, 199–203.

    Article  CAS  PubMed  Google Scholar 

  45. Yonekura, K., Maki-Yonekura, S., and Namba, K. (2003) Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424, 643–650.

    Article  CAS  PubMed  Google Scholar 

  46. Wade, R. H., Chrétien, D., and Job, D. (1990) Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J. Mol. Biol. 212, 775–786.

    Article  CAS  PubMed  Google Scholar 

  47. Chrétien, D. and Wade, R. H. (1991) New data on the microtubule surface lattice. Biol. Cell 71, 161–174.

    Article  PubMed  Google Scholar 

  48. Mandelkow, E. M., Schultheiss, R., Rapp, R., Muller, M., and Mandelkow, E. (1986) On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness. J. Cell Biol. 102, 1067–1073.

    Article  CAS  PubMed  Google Scholar 

  49. Kikkawa, M., Ishikawa, T., Nakata, T., Wakabayashi, T., and Hirokawa, N. (1994) Direct visualization of the microtubule lattice seam both in vitro and in vivo. J. Cell Biol. 127, 1965–1971.

    Article  CAS  PubMed  Google Scholar 

  50. Song, Y. H. and Mandelkow, E. (1995) The anatomy of flagellar microtubules: polarity, seam, junctions, and lattice. J. Cell Biol. 128, 81–94.

    Article  CAS  PubMed  Google Scholar 

  51. Kull, F. J., Sablin, E. P., Lau, R., Fletterick, R. J., and Vale, R. D. (1996) Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380, 550–555.

    Article  CAS  PubMed  Google Scholar 

  52. Kozielski, F., Sack, S., Marx, A., et al. (1997) The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91, 985–941.

    Article  CAS  PubMed  Google Scholar 

  53. Gulick, A. M., Song, H., Endow, S. A., and Rayment, I. (1998) X-ray crystal structure of the yeast Kar3 motor domain complexed with Mg.ADP to 2.3A resolution. Biochemistry 37, 1769–1776.

    Article  CAS  PubMed  Google Scholar 

  54. Löwe, J., Li, H., Downing, K. H., and Nogales, E. (2001) Refined structure of tubulin at 3.5Å resolution. J. Mol. Biol. 313, 1045–1057.

    Article  PubMed  Google Scholar 

  55. Hirose, K., Akimaru, E., Akiba, T., Endow, S. A., and Amos, L. A. (2006) Large conformational changes in a kinesin motor catalysed by interaction with microtubules. Mol. Cell 23, 913–923.

    Article  CAS  PubMed  Google Scholar 

  56. Kikkawa, M. and Hirokawa, N. (2006) High-resolution cryo-EM maps show the nucleotide binding pocket of KIF1A in open and closed conformations. EMBO J. 25, 4187–4194.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Amos, L.A., Hirose, K. (2007). Studying the Structure of Microtubules by Electron Microscopy. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_5

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics