Skip to main content

Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts

  • Protocol
Microtubule Protocols

Abstract

Microtubule-binding proteins are conveniently divided into two large groups: MAPs (microtubule-associated proteins), which can stabilize, anchor, and/or nucleate microtubules, and motors, which use the energy of ATP hydrolysis for a variety of functions, including microtubule network organization and cargo transportation along microtubules. Here, we describe the use of Taxol-stabilized microtubules for purification of MAPs, motors, and their complexes from Xenopus egg extracts. Isolated proteins are analysed using sodium dodecyl sulfate gel electrophoresis and identified by various mass spectrometry and database mining technologies. Found proteins can be grouped into three classes: (1) known MAPs and motors; (2) proteins previously reported as associated with the microtubule cytoskeleton, but without a clearly defined cytoskeletal function; (3) proteins not yet described as having microtubule localization. Sequence-similarity methods employed for protein identification allow efficient identification of MAPs and motors from species with yet unsequenced genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548.

    Article  CAS  PubMed  Google Scholar 

  2. Borisy, G. G. and Taylor, E. W. (1967) The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J. Cell Biol. 34, 525–533.

    Article  CAS  PubMed  Google Scholar 

  3. Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P. (1975) Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc. Natl. Acad. Sci. USA 72, 177–181.

    Article  CAS  PubMed  Google Scholar 

  4. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M. W. (1975) A protein factor essential for microtubule assembly. Proc. Natl. Acad. Sci. USA 72, 1858–1862.

    Article  CAS  PubMed  Google Scholar 

  5. Hirokawa, N., Noda, Y., and Okada, Y. (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr. Opin. Cell Biol. 10, 60–73.

    Article  CAS  PubMed  Google Scholar 

  6. Morejohn, L. C. (1994) Microtubule binding proteins are not necessarily microtubule-associated proteins. Plant Cell 6, 1696–1699.

    Article  CAS  PubMed  Google Scholar 

  7. Dustin, P. (1980) Microtubules. Sci. Am. 243, 66–76.

    Article  CAS  PubMed  Google Scholar 

  8. Hirokawa, N. (1994) Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr. Opin. Cell Biol. 6, 74–81.

    Article  CAS  PubMed  Google Scholar 

  9. Cassimeris, L. and Spittle, C. (2001) Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163–226.

    Article  CAS  PubMed  Google Scholar 

  10. Ookata, K., Hisanaga, S., Bulinski, J. C., et al. (1995) Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics. J. Cell Biol. 128, 849–862.

    Article  CAS  PubMed  Google Scholar 

  11. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721.

    Article  CAS  PubMed  Google Scholar 

  12. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.

    Article  CAS  PubMed  Google Scholar 

  13. Andersen, S. S. (1998) Xenopus interphase and mitotic microtubule-associated proteins differentially suppress microtubule dynamics in vitro. Cell Motil. Cytoskeleton. 41, 202–213.

    Article  CAS  PubMed  Google Scholar 

  14. Andersen, S. S. L. (1999) Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view. BioEssays 21, 53–60.

    Article  CAS  PubMed  Google Scholar 

  15. Nachury, M. V., Maresca, T. J., Salmon, W. C., Waterman-Storer, C. M., Heald, R., and Weis, K. (2001) Importin beta is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106.

    Article  CAS  PubMed  Google Scholar 

  16. Desai, A., Murray, A., Mitchison, T. J., and Walczak, C. E. (1999) The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412.

    Article  CAS  PubMed  Google Scholar 

  17. Murray, A. W. (1991) Cell cycle extracts. Methods Cell Biol. 36, 581–605.

    Article  CAS  PubMed  Google Scholar 

  18. Hyman, A., Drechsel, D., Kellogg, D., et al. (1991) Preparation of modified tubulins. Methods Enzymol. 196, 478–85.

    Article  CAS  PubMed  Google Scholar 

  19. Castoldi, M. and Popov, A. V. (2003) Purification of brain tubulin through two cycles of polymerization-depolymerization in a high-molarity buffer. Protein Expr. Purif. 32, 83–88.

    Article  CAS  PubMed  Google Scholar 

  20. Brinkley, B. R. (1985) Microtubule organizing centers. Annu. Rev. Cell Biol. 1, 145–172.

    Article  CAS  PubMed  Google Scholar 

  21. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (2005) Current Protocols in Molecular Biology. John Wiley & Sons, Hoboken, NJ.

    Google Scholar 

  22. Gianazza, E., Celentano, F., Magenes, S., Ettori, C., and Righetti, P. G. (1989) Formulations for immobilized pH gradients including pH extremes. Electrophoresis 10, 806–808.

    Article  CAS  PubMed  Google Scholar 

  23. Rabilloud, T., Valette, C., and Lawrence, J. J. (1994) Sample application by ingel rehydration improves the resolution of two-dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552–1558.

    Article  CAS  PubMed  Google Scholar 

  24. Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.

    Article  CAS  PubMed  Google Scholar 

  25. Tastet, C., Lescuyer, P., Diemer, H., Luche, S., van Dorsselaer, A., and Rabilloud, T. (2003) A versatile electrophoresis system for the analysis of high-and low-molecular-weight proteins. Electrophoresis 24, 1787–1794.

    Article  CAS  PubMed  Google Scholar 

  26. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988) Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 9, 255–262.

    Article  CAS  PubMed  Google Scholar 

  27. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850–858.

    Article  CAS  PubMed  Google Scholar 

  28. Shevchenko, A., Sunyaev, S., Liska, A., Bork, P., and Shevchenko, A. (2003) Nanoelectrospray tandem mass spectrometry and sequence similarity searching for identification of proteins from organisms with unknown genomes. Methods Mol. Biol. 211, 221–234.

    CAS  PubMed  Google Scholar 

  29. Frank, A. and Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal. Chem. 77, 964–973.

    Article  CAS  PubMed  Google Scholar 

  30. Shevchenko, A., Sunyaev, S., Loboda, A., et al. (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal. Chem. 73, 1917–1926.

    Article  CAS  PubMed  Google Scholar 

  31. Habermann, B., Oegema, J., Sunyaev, S., and Shevchenko, A. (2004) The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol. Cell. Proteomics. 3, 238–249.

    Article  CAS  PubMed  Google Scholar 

  32. Liska, A. J., Popov, A. V., Sunyaev, S., et al. (2004) Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 4, 2707–2721.

    Article  CAS  PubMed  Google Scholar 

  33. Spudich, J. A. and Lin, S. (1972) Cytochalasin B, its interaction with actin and actomyosin from muscle (cell movement-microfilaments-rabbit striated muscle). Proc. Natl. Acad. Sci. USA 69, 442–446.

    Article  CAS  PubMed  Google Scholar 

  34. Schiff, P. B., Fant, J., and Horwitz, S. B. (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277, 665–667.

    Article  CAS  PubMed  Google Scholar 

  35. Brady, S. T. and Lasek, R. J. (1984) Adenylyl imidodiphosphate (AMPPNP), a nonhydrolyzable analogue of ATP, produces a stable intermediate in the motility cycle of fast axonal transport. Biol. Bull. 167, 503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Gache, V., Waridel, P., Luche, S., Shevchenko, A., Popov, A.V. (2007). Purification and Mass-Spectrometry Identification of Microtubule-Binding Proteins from Xenopus Egg Extracts. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics