Skip to main content

Methods for Studying Vinca Alkaloid Interactions With Tubulin

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

Vinca alkaloids play a vital role in chemotherapy protocols for a wide range of hematological and solid tumors. Studies of drug interactions with the drug target, tubulin or microtubules, have helped us to understand the cytotoxic and toxic effects. We present here in vivo and in vitro methods for studying vinca alkaloid interactions with tubulin. In vivo methods for examining drug effects on cell proliferation and intracellular tubulin or microtubules and direct visualization of drug effects by fluorescence microscopy are presented. In vitro methods for measuring drug affinity for tubulin by analytical ultracentrifugation, kinetics of drug binding by light scattering and drug effects on microtubules by turbidity are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Noble, R. L, Beer, C. T., and Cutts, J. H. (1958) Role of chance observation in chemotherapy: vinca rosea. Ann. N.Y. Acad. Sci. 76, 882–894.

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, I. S., Wright, H. F., and Svoboda, G. H. (1959) Experimental basis for clinical evaluation of antitumor principles derived from Vinca rosea Linn. J. Lab. Clin. Med. 54, 830.

    Google Scholar 

  3. Hill, B. T. (2001) Vinflunine, a second generation novel Vinca Alkaloid with a distinctive pharmacological profile, now in clinical development and prospects for future mitotic blockers. Curr. Pharm. Des. 7, 1199–1212.

    Article  CAS  PubMed  Google Scholar 

  4. Kruczynski, A. and Hill, B. T. (2001) Vinflunine, the latest Vinca alkaloid in clinical development. A review of its preclinical anticancer properties. Crit. Rev. Oncol. Hematol. 40, 159–173.

    Article  CAS  PubMed  Google Scholar 

  5. Lobert, S. and Correia, J. J. (2000) Energetics of vinca alkaloid interactions with tubulin. Meth. Enzymol. Energetics of Macromolecules 323, 77.

    CAS  Google Scholar 

  6. Correia, J. J. and Lobert, S. (2001) Physiochemical aspects of tubulin-interacting, antimitotic drugs. Curr. Pharm. Design 7, 1213–1228.

    Article  CAS  Google Scholar 

  7. Cabral, F. (2006) Mechanisms of resistance to drugs that interfere with microtubule assembly, in Microtubules in Health and Disease, (Fojo, T., ed.), Humana Press, Totowa, NJ, in press.

    Google Scholar 

  8. Hiser, A., Aggarwal, R., Young, A., et al. (2006) Correlation of beta-tubulin mRNA and protein levels in twelve human cancer cell lines. Cell Motil. Cytoskel. 63, 41.

    Article  CAS  Google Scholar 

  9. Kavallaris, M., Tait, A. S., Walsh, B. J., et al. (2001) Multiple microtubule alterations are associated with vinca alkaloid resistance in human leukemia cells. Cancer Res. 61, 5903–5809.

    Google Scholar 

  10. Thrower, D., Jordan, M. A., and Wilson, L. (1993) A quantitative solid-phase binding assay for tubulin. Methods Cell Biol. 37, 129–145.

    Article  CAS  PubMed  Google Scholar 

  11. Minotti, A. M., Barlow, S. B., and Cabral, F. (1991) Resistance to antimitotic drugs in Chinese hamster ovary cells correlates with changes in the level of polymerized tubulin. J. Biol. Chem. 266, 3987–3994.

    CAS  PubMed  Google Scholar 

  12. Dhamodharan, R., Jordan, M. A., Thrower, D., Wilson, L., and Wadsworth, P. (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol. Biol. Cell 6, 1215–1229.

    CAS  PubMed  Google Scholar 

  13. Jordan, M. A. and Wilson, L. (1998) Use of drugs to study role of microtubule Assembly dynamics in living cells. Methods Enzymol. 298, 252–276.

    Article  CAS  PubMed  Google Scholar 

  14. Jordan, M. A. (2002) Mechanisms of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anti-Cancer Agents 2, 1–17.

    Article  CAS  Google Scholar 

  15. Wilson, L., Panda, D., and Jordan, M. S. (1999) Modulation of microtubule dynamics by drugs: a paradigm for the actions of cellular regulators. Cell Struct. pFunct. 24, 329–335.

    Article  CAS  Google Scholar 

  16. Beck, W. T., Cirtain, M. C., and Lefko, J. L. (1983) Energy-dependent educed drug binding as a mechanism of vinca alkaloid resistance in human leukemic lymphoblasts. Mol. Pharmacol. 24, 485–492.

    CAS  PubMed  Google Scholar 

  17. Ferguson, P. J., Phillips, J. R., Selner, M., and Cass, C. E. (1984) Differential activity of vincristine and vinblastine against cultured cells. Cancer Res. 44, 3307–3312.

    CAS  PubMed  Google Scholar 

  18. Bai, R., Swartz, R. E., Kepler, J. A., Pettit, G. R., and Hamel, E. (1996) Characterization of the interaction of cryptophycin 1 with tubulin: binding in the Vinca domain competitive inhibition of dolastatin 10 binding, and unusual aggregation reaction. Cancer Res. 56, 4398–4406.

    CAS  PubMed  Google Scholar 

  19. Wilson, L., Jordan, M. S., Morse, A., and Margolis, R. L. (1982) Interaction of vinblastine with steady-state microtubule in vitro. J. Mol., Biol. 159, 125–149.

    Article  CAS  Google Scholar 

  20. Jordan, M. A. and Wilson, L. (1990) Kinetic analysis of tubulin exchange at microtubule ends at low vinblastine concentrations. Biochemistry 29, 2730–2739.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson, L., Creswell, K. M., and Chin, D. (1975) The mechanism of action of vinblastine. Binding of [acetyl-3H] vinblastine to embryonic chick brain tubulin and tubulin from sea urchin sperm tail outer doublet microtubules. Biochemistry 14, 5586–5592.

    Article  CAS  PubMed  Google Scholar 

  22. Lee, J. C., Harrison, D., and Timasheff, S. N. (1975) Interaction of vinblastine with calf brain microtubule protein. J. Biol. Chem. 250, 9276–9282.

    CAS  PubMed  Google Scholar 

  23. Singer, W. D., Hersh, R. T., and Himes, R. H. (1988) Effect of solution variables on the binding of vinblastine to tubulin. Biochem. Pharmacol. 37, 2691–2696.

    Article  CAS  PubMed  Google Scholar 

  24. Prakash, V. and Timasheff, S. N. (1991) Mechanism of interaction of vinca alkaloids with tubulin: catharanthine and vindoline. Biochemistry 30, 873–880.

    Article  CAS  PubMed  Google Scholar 

  25. Sackett, D. L. (1995) Vinca site agents induce structural changes in tubulin different from and antagonistic to changes induced by colchicines site agents. Biochemistry 34, 7010–7019.

    Article  CAS  PubMed  Google Scholar 

  26. Rai, S. S. and Wolff, J. (1987) Localization of the vinblastine-binding site on ß-tubulin. J. Biol. Chem. 271, 14,707–14,711.

    Google Scholar 

  27. Lobert, S., Ingram, J. W., Hill, B. T., and Correia, J. J. (1998) A comparison of thermodynamic parameters for vinorelbine-and vinflunine-induced tubulin self association by sedimentation velocity. Mol. Pharmacol. 53, 908–915.

    CAS  PubMed  Google Scholar 

  28. Lobert, S., Vulevic, B., and Correia, J. J. (1996) Interaction of vinca alkaloids with tubulin: a comparison of vinblastine, vincristine and vinorelbine. Biochemistry 35, 6806–6814.

    Article  CAS  PubMed  Google Scholar 

  29. Lobert, S., Ingram, J. W., and Correia, J. J. (1999) Additivity of dilantin and vinblastine inhibitory effects on microtubule assembly. Cancer Res. 59, 4816–4822.

    CAS  PubMed  Google Scholar 

  30. Verdier-Pinard, P., Gares, M., and Wright, M. (1999) Differential in vitro association of vinca alkaloid-induced tubuline spiral filaments into aggregated spirals. Biochem. Pharmacol. 58, 959–971.

    Article  CAS  PubMed  Google Scholar 

  31. Gigant, B., Wang, C., Ravelli, R. B. G., et al. (2005) Structural basis for the regulation of tubulin by binblastine. Nature 435, 519–522.

    Article  CAS  PubMed  Google Scholar 

  32. Nogales, E., Medrano, F. J., Diakun, G. P., Mant, G. R., Towns-Andrews, E., and Bordas, J. (1995) The effect of temperature on the structure of vinblastine-induced polymers of purified tubulin: detection of a reversible conformational change. J. Mol. Biol. 254, 416–430.

    Article  CAS  PubMed  Google Scholar 

  33. Williams, R. C., Shah, C., and Sackett, D. (1999) Separation of tubulin isoforms by isoelectric focusing in immobilized pH gradient gels. Anal. Biochem. 275, 265–267.

    Article  CAS  PubMed  Google Scholar 

  34. Lobert, S. and Correia, J. J. (2001) Characterization of fluorescent vinca alkaloid (bobipy-vinblastine) to probe drug targets and apoptosis. Mol. Biol. Cell 12, 431a.

    Google Scholar 

  35. Williams, R. C., Jr. and Lee, J. C. (1982) Preparation of tubulin from pig brain. Methods Enzymol. 85, 376–408.

    Article  CAS  PubMed  Google Scholar 

  36. Correia, J. J., Baty, L. T., and Williams, R. C., Jr. (1987) Mg2+ dependence of guanine nucleotide binding to tubulin. J. Biol. Chem. 262, 17,278–17,284.

    CAS  PubMed  Google Scholar 

  37. Detrich, H. W. and Williams, R. C., Jr. (1978) Reversible dissociation of the αß dimer of tubulin from bovine brain. Biochemistry 34, 3900–3907.

    Article  Google Scholar 

  38. Penefsky, H. S. (1979) A centrifuged-column procedure for the measurement of ligand binding by beef heart F1. Methods Enzymol. 56, 527–531.

    Article  CAS  PubMed  Google Scholar 

  39. Lee, J. C. and Timasheff, S. N. (1977) In vitro reconstitution of calf brain microtubules: effects of solution variables. Biochemistry 16, 1754–1764.

    Article  CAS  PubMed  Google Scholar 

  40. Vulevic, B. and Correia, J. J. (1997) Thermodynamic and structural analysis ofmicrotubule assembly: the role of GTP hydrolysis. Biophys. J. 72, 1357–1375.

    Article  CAS  PubMed  Google Scholar 

  41. Detrich, H. W., Jordan, M. A., Wilson, L., and Williams, R. C. (1985) Mechanism of microtubule assembly. Changes in polymer structure and organization during assembly of sea urchin egg tubulin. J. Biol. Chem. 260, 9479–9490.

    CAS  PubMed  Google Scholar 

  42. Lobert, S., Fahy, J., Hill, B. T., Duflos, A., Entievant, C., and Correia, J. J. (2000) Vinca alkaloid-induced tubulin spiral formation correlates with cytotoxicity in the leukemic L1210 cell line. Biochemistry 39, 12,053–12,062.

    Article  CAS  PubMed  Google Scholar 

  43. Correia, J. J. (2000) The analysis of weight average sedimentation data. Methods Enzymol. 321, 81–100.

    Article  CAS  PubMed  Google Scholar 

  44. Sontag, C. A., Stafford, W. F., and Correia, J. J. (2004) A comparison of weight average and direct boundary fitting of sedimentation velocity data for indefinite polymerizing systems. Biophys. Chem. 108, 215–230.

    Article  CAS  PubMed  Google Scholar 

  45. Correia, J. J., Sontag, C. A., Stafford, W. F., and Sherwood, P. J. (2005) Models for direct boundary fitting of indefinite ligand-linked self-association, in Analytical Ultracentrifugation: Techniques and Methods, (Scott, D., Harding, S., and Rowe, A., eds.). Royal Society of Chemistry, Cambrige, UK, pp. 51–63.

    Google Scholar 

  46. Bernasconi, C. F. (1976) Relaxation Kinetics. Academic Press, New York.

    Google Scholar 

  47. Thusius, D., Dessen, P., and Jallon, J. M. (1975) Mechanism of bovine liver glutamate dehydrogenase self-association: I. Kinetic evidence for a random association of polymer chains. J. Mol. Biol. 92, 412–432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Lobert, S., Correia, J.J. (2007). Methods for Studying Vinca Alkaloid Interactions With Tubulin. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_18

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics