Skip to main content

Live Cell Approaches for Studying Kinetochore-Microtubule Interactions in Drosophila

  • Protocol
Microtubule Protocols

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 137))

Abstract

Kinetochores are essential for the proper positioning, movement and segregation of chromosomes on spindle microtubules. Live cell analyses of kinetochore movements on the spindle provide an important tool for dissecting the molecular machinery underlying kinetochore-based chromosome motility. Here, we describe contemporary techniques for studying and manipulating kinetochore function in live Drosophila syncytial blastoderm-stage embryos and S2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grieder, N. C., de Cuevas, M., and Spradling, A. C. (2000) The fusome organizes the microtubule network during oocyte differentiation in Drosophila. Development 127, 4253–4264.

    CAS  PubMed  Google Scholar 

  2. Trieselmann, N. and Wilde, A. (2002) Ran localizes around the microtubule spindle in vivo during mitosis in Drosophila embryos. Curr. Biol. 12, 1124–1129.

    Article  CAS  PubMed  Google Scholar 

  3. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J. G., and Raff, J. W. (2000) DTACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo. EMBO J. 19, 241–252.

    Article  CAS  PubMed  Google Scholar 

  4. Clarkson, M. and Saint, R. (1999) A His2AvDGFP fusion gene complements a lethal His2AvD mutant allele and provides an in vivo marker for Drosophila chromosome behavior. DNA Cell Biol. 18, 457–462.

    Article  CAS  PubMed  Google Scholar 

  5. Sharp, D. J., Rogers, G. C., and Scholey, J. M. (2000) Cytoplasmic dynein is required for poleward chromosome movement during mitosis in Drosophila embryos. Nat. Cell Biol. 2, 922–930.

    Article  CAS  PubMed  Google Scholar 

  6. Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B. (2000) Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97, 716–721.

    Article  CAS  PubMed  Google Scholar 

  7. Brust-Mascher, I. and Scholey, J. M. (2002) Microtubule flux and sliding in mitotic spindles of Drosophila embryos. Mol. Biol. Cell 13, 3967–3975.

    Article  CAS  PubMed  Google Scholar 

  8. Basto, R., Scaerou, F., Mische, S., et al. (2004) In vivo dynamics of the rough deal checkpoint protein during Drosophila mitosis. Curr. Biol. 14, 56–61.

    Article  CAS  PubMed  Google Scholar 

  9. Valdes-Perez, R. E. and Minden, J. S. (1995) Drosophila melanogaster syncytial nuclear divisions are patterned: time-lapse images, hypothesis and computational evidence. J. Theor. Biol. 175, 525–532.

    Article  CAS  PubMed  Google Scholar 

  10. Sharp, D. J., Brown, H. M., Kwon, M., Rogers, G. C., Holland, G., and Scholey, J. M. (2000) Functional coordination of three mitotic motors in Drosophila embryos. Mol. Biol. Cell 11, 241–253.

    CAS  PubMed  Google Scholar 

  11. Sharp, D. J., Yu, K. R., Sisson, J. C., Sullivan, W., and Scholey, J. M. (1999) Antagonistic microtubule-sliding motors position mitotic centrosomes in Drosophila early embryos. Nat. Cell Biol. 1, 51–54.

    Article  CAS  PubMed  Google Scholar 

  12. Kwon, M., Morales-Mulia, S., Brust-Mascher, I., Rogers, G. C., Sharp, D. J., and Scholey, J. M. (2004) The chromokinesin, KLP3A, dives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility. Mol. Biol. Cell 15, 219–233.

    Article  CAS  PubMed  Google Scholar 

  13. Rogers, G. C., Rogers, S. L., Schwimmer, T. A., et al. (2004) Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 427, 364–370.

    Article  CAS  PubMed  Google Scholar 

  14. Rogers, S. L., Rogers, G. C., Sharp, D. J., and Vale, R. D. (2002) Drosophila EB1 is important for proper assembly, dynamics, and positioning of the mitotic spindle. J. Cell Biol. 158, 873–884.

    Article  CAS  PubMed  Google Scholar 

  15. Ruden, D. M., Cui, W., Sollars, V., and Alterman, M. (1997) A Drosophila kinesin-like protein, Klp38B, functions during meiosis, mitosis, and segmentation. Dev. Biol. 191, 284–296.

    Article  CAS  PubMed  Google Scholar 

  16. Mermall, V. and Miller, K. G. (1995) The 95F unconventional myosin is required for proper organization of the Drosophila syncytial blastoderm. J. Cell Biol. 129, 1575–1588.

    Article  CAS  PubMed  Google Scholar 

  17. Savoian, M. S., Goldberg, M. L., and Rieder, C. L. (2000) The rate of poleward chromosome motion is attenuated in Drosophila zw10 and rod mutants. Nat. Cell Biol. 2, 948–952.

    Article  CAS  PubMed  Google Scholar 

  18. Maddox, P. S., Moree, B., Canman, J. C., and Salmon, E. D. (2003) Spinning disk confocal microscope system for rapid high-resolution, multimode, fluorescence speckle microscopy and green fluorescent protein imaging in living cells. Methods Enzymol. 360, 597–617.

    Article  PubMed  Google Scholar 

  19. Rogers, G. C., Rogers, S. L., and Sharp, D. J. (2005) Spindle microtubules in flux. J. Cell. Sci. 118, 1105–1116.

    Article  CAS  PubMed  Google Scholar 

  20. Clemens, J. C., Worby, C. A., Simonson-Leff, N., et al. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA 97, 6499–6503.

    Article  CAS  PubMed  Google Scholar 

  21. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  22. Caplen, N. J., Fleenor, J., Fire, A., and Morgan, R. A. (2000) dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252, 95–105.

    Article  CAS  PubMed  Google Scholar 

  23. Worby, C. A., Simonson-Leff, N., and Dixon, J. E. (2001) RNA interference of gene expression (RNAi) in cultured Drosophila cells. Sci. STKE 2001, PL1.

    Article  CAS  PubMed  Google Scholar 

  24. March, J. C. and Bentley, W. E. (2004) Insulin stimulates double-stranded RNA uptake in Drosophila S2 cells. Biotechniques 37, 898–900.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Buster, D.W., Sharp, D.J. (2007). Live Cell Approaches for Studying Kinetochore-Microtubule Interactions in Drosophila. In: Zhou, J. (eds) Microtubule Protocols. Methods in Molecular Medicine™, vol 137. Humana Press. https://doi.org/10.1007/978-1-59745-442-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-442-1_10

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-642-9

  • Online ISBN: 978-1-59745-442-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics