Skip to main content

Implementation of Pharmacogenomic Sample Collection in Clinical Trials

  • Protocol

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

This chapter is intended to provide an overview of the operational considerations and potential obstacles that can be anticipated during the implementation of pharmacogenomic research in clinical trials. Particular attention is given to the elements of the protocol and of the informed consent and the considerations for collection of different sample types on a global level. The goal is to provide the reader with an appreciation for the study design elements on an operational level rather than on a scientific or statistical study design level. Educational efforts by various working groups to harmonize global standards are also outlined and will provide the reader with an overview of the ongoing efforts to promote global genomic research in the present day.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. EMEA, http://www.emea.europa.eu/

  2. FDA, http://www.fda.gov/cder/

  3. MHLW,http://www.mhlw.go.jp/english/index.html

  4. PMC,http://www.personalizedmedicinecoalition.org/communications/overview.php

  5. Eriksson S, Helgesson G (2005) Potential harms, anonymization, and the right to withdraw consent to biobank research. Eur J Hum Genet 13(9):1071–6

    Article  PubMed  Google Scholar 

  6. Rivera R, Borasky D, Rice R, Carayon F, Wong E (2007) Informed consent: an international researcher's perspective. Am J Public Health 97(1):25–30

    Article  PubMed  Google Scholar 

  7. Miller CK, O'Donnell DC, Searight HR, Barbarash RA (1996) The Deaconess Informed Consent Comprehension Test: an assessment tool for clinical research subjects. Pharma-cotherapy 16(5):872–8

    CAS  Google Scholar 

  8. Daugherty C, Ratain MJ, Grochowski E, et al (1995) Perceptions of cancer patients and their physicians involved in phase I trials. J Clin Oncol 13(5):1062–72

    CAS  PubMed  Google Scholar 

  9. Flesch R (1978) A new readability yardstick. J Appl Psychol 32:221–33

    Article  Google Scholar 

  10. Flesch R (1979) How to write plain English. Harper, New York

    Google Scholar 

  11. Baker MT, Taub HA (1983) Readability of informed consent forms for research in a Veterans Administration medical center. JAMA 250(19):2646–8

    Article  CAS  PubMed  Google Scholar 

  12. Duffy T, Kabance P (1982) Testing a readability writing approach to text revision. J Educ Psychol 74:733–48

    Article  Google Scholar 

  13. Eaton ML, Holloway RL (1980) Patient comprehension of written drug information. Am J Hosp Pharm 37(2):240–3

    CAS  PubMed  Google Scholar 

  14. Irwin J (1991) Teaching reading comprehension process, 2nd ed. Prentice Hall, New Jersey.

    Google Scholar 

  15. Vacca R, Vacca J (1989) Content area reading, 3rd ed. Scott Foresman, Illinois.

    Google Scholar 

  16. Kirsch I, Jungeblut A, Jenkins L, Kolstad A (1993) Adult literacy in America., U.S. Department of Education, Washington

    Google Scholar 

  17. Regulations USCoF (2007) United States Code of Federal Regulations. In: 21 CFR 50.25.

    Google Scholar 

  18. Sciences CfIOoM (2002) International ethical guidelines for biomedical research involving human subjects. Geneva, ISBN 92-9036-075-5

    Google Scholar 

  19. Anderson C, Gomez-Mancilla B, Spear B et al (2002) Elements of informed consent for phar-macogenetic research: perspective of the Pharmacogenetics Working Group.Pharmacogenomics J 2(5):284–92

    Article  CAS  PubMed  Google Scholar 

  20. Wertz DC (2002) Genetic discrimination—an overblown fear? Nat Rev Genet 3(7):496

    CAS  PubMed  Google Scholar 

  21. Shickle D (2006) The consent problem within DNA biobanks. Stud Hist Philos Biol Biomed Sci 37(3):503–19

    Article  PubMed  Google Scholar 

  22. Hoeyer K, Olofsson BO, Mjorndal T, Lynoe N (2004) Informed consent and biobanks: a population-based study of attitudes towards tissue donation for genetic research. Scand J Public Health 32(3):224–9

    Article  PubMed  Google Scholar 

  23. ICH Harmonized Tripartite Guideline E6(R1): Good Clinical Practice: Consolidated Guideline, 1996.

    Google Scholar 

  24. Renegar G, Webster C, Stuerzebecher S et al (2006) Returning genetic research results to individuals: points to consider. Bioethics 20(1):24–36

    Article  PubMed  Google Scholar 

  25. Bhutta ZA (2004) Beyond informed consent. B World Health Organ 82(10):771–7

    Google Scholar 

  26. Madisen L, Hoar D, Holroyd C, Crisp M, Hodes M (1987) DNA banking: the effects of storage of blood and isolated DNA on the integrity of DNA. Am J Med Genet 27:379–90

    Article  CAS  PubMed  Google Scholar 

  27. Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11:298–300

    CAS  PubMed  Google Scholar 

  28. McCullough J, Carter S, Quie P (1974) Effects of anticoagulants and storage on granulocyte function in bank blood. Blood 43:207–17

    CAS  PubMed  Google Scholar 

  29. Cushwa W, Medrano J (1993) Effects of blood storage time and temperature on DNA yield and quality. Biotechniques 14:204–7

    CAS  PubMed  Google Scholar 

  30. Polakova H, Kadasi L, Zelinkova M (1989) The yield and quality of DNA extracted from blood samples stored under various conditions. Bratisl Lek Listy 90:844–7

    CAS  PubMed  Google Scholar 

  31. Bomjen G, Raina A, Sulaiman I, Hasnain S, Dogra T (1996) Effect of storage of blood samples on DNA yield, quality and fingerprinting: a forensic approach. Ind J Exp Biol 34:384–6

    CAS  Google Scholar 

  32. Ross K, Haites N, Kelly K (1990) Repeated freezing and thawing of peripheral blood and DNA in suspension: effects on DNA yield and integrity. J Med Genet 27:569–70

    Article  CAS  PubMed  Google Scholar 

  33. Ellsworth D, Manolio T (1999) The emerging importance of genetics in epidemiologic research. I. Basic concepts in human genetics and laboratory technology. AEP 9(1):1–16

    CAS  PubMed  Google Scholar 

  34. McIndoe R, Linhardt M, Hood L (1995) Single tube genomic DNA isolation from whole blood without pre-isolating white blood cells. BioTechniques 19(1):30–2

    CAS  PubMed  Google Scholar 

  35. Fan H, Hedge P (2005) The transcriptome in blood: challenges and solutions for robust expression profiling. Curr Mol Med 5:3–10

    Article  CAS  PubMed  Google Scholar 

  36. Rainen L, Oelmueller U, Jurgensen S et al (2002) Stabilization of mRNA expression in whole blood samples. Clin Chem 48:1883–90

    CAS  PubMed  Google Scholar 

  37. Feezor R, Baker H, Mindrinos M et al (2004) Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 19:247–54

    Article  CAS  PubMed  Google Scholar 

  38. Haskill S, Johnson C, Eierman D, Becker S, Warren K (1988) Adherence induces selective mRNA expression of monocyte mediators and proto-oncogenes. J Immunol 140:1690–4

    CAS  PubMed  Google Scholar 

  39. Pahl A, Brune K (2002) Gene expression changes in blood after phlebotomy: implications for gene expression profiling. Blood 100:1094–5

    Article  CAS  PubMed  Google Scholar 

  40. Tanner M, Berk L, Felten D, Blidy A, Bit S, Ruff D (2002) Substantial changes in gene expression level due to the storage temperature and storage duration of human whole blood. Clin Lab Haematol 24:337–41

    Article  CAS  PubMed  Google Scholar 

  41. Davidson T, Johnson C, Andruss B (2006) Analyzing micro-RNA expression using microar-rays. Method Enzymol 411:1–14

    Article  Google Scholar 

  42. Madabushi L, Latham G, Andruss G (2006) RNA extraction for arrays. Method Enzymol 411:1–14.

    Article  Google Scholar 

  43. Emmert-Buck M, Bonner R, Smith P et al (1996) Laser capture microdissection. Science 274:998–1001.

    Article  CAS  PubMed  Google Scholar 

  44. Perlmutter M, Best C, Gillespie J et al (2004) Comparison of snap freezing versus ethanol fixation for gene expression profiling of tissue specimens. J Mol Diagn 6(4):371–7

    Article  CAS  PubMed  Google Scholar 

  45. Kim J, Hwang M, Shin H et al (2003) Differential expression analysis using paraffin-embedded tissues after laser microdissection. J Cell Biochem 90:998–1006

    Article  CAS  PubMed  Google Scholar 

  46. Vincek V, Nassiri M, Nadji M, Morales A (2003) A tissue fixative that protects macromole-cules (DNA, RNA, and protein) and histomorphology in clinical samples. Lab Invest 90:1427–35.

    Article  Google Scholar 

  47. Mutter G, Zahrieh D, Liu C et al (2004) Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genom 5:88

    Article  Google Scholar 

  48. Guder W, Narayanan S, Wisserh H, Zawta B (2003) Samples: from the patient to the laboratory: the impact of preanalytical variables on the quality of laboratory results, 3rd ed. Wiley, New York. p 106

    Google Scholar 

  49. Drake S, Bowen R, Remaley A, Hortin G (2004) Potential interferences from blood collection tubes in mass spectrometric analysis of serum polypetides. Clin Chem 50:2398–401

    Article  CAS  PubMed  Google Scholar 

  50. Rai A, Gelfand C, Haywood B et al (2005) HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics 5:3262–77

    Article  CAS  PubMed  Google Scholar 

  51. Villanueva J, Philip J, Entenberg D et al (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76:1560–70.

    Article  CAS  PubMed  Google Scholar 

  52. Petricoin E, Ardekani F, Hitt A, Levine B (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359:572–7

    Article  CAS  PubMed  Google Scholar 

  53. Check E (2004) Proteomics and cancer: running before we can walk. Nature 429:496–7

    Article  CAS  PubMed  Google Scholar 

  54. Diamandis E (2004) Mass spectrometry as a diagnostic and a cancer biomarker discovery tool. Proteomics 3:367–78

    CAS  Google Scholar 

  55. Rai A, Stemmer J, Zhang Z et al (2005) Analysis of human proteome organization plasma proteome project (HUPO PPP) reference specimens using surace enhanced laser desorption/ ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers. Proteomics 5:3467–74

    Article  CAS  PubMed  Google Scholar 

  56. Haab B, Geierstanger B, Michailidis B et al (2005) Immunoassay and antibody microar-ray analysis of the HUPO plasma proteome project reference specimens: systematic variation between sample types and calibration of mass spectrometry data. Proteomics 5:3278–91.

    Article  CAS  PubMed  Google Scholar 

  57. Tubes and Additives for venous blood specimen collection: approved standard-fifth edition, NCCLS. In. Wayne, PA; 2003:33

    Google Scholar 

  58. Spear B, Heath-Chiozzi M, Barnes D, Cheeseman K, Shaw P, Campbell D (2001) Terminology for sample collection in clinical genetic studies. Pharmacogenomics J 1:101–3

    Article  Google Scholar 

  59. Lesko L, Salerno R, Spear B et al (2003) Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-Drug Safe Workshop. J Clin Pharmacol 43(4):342–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ricci, D.S., Franc, M. (2008). Implementation of Pharmacogenomic Sample Collection in Clinical Trials. In: Cohen, N. (eds) Pharmacogenomics and Personalized Medicine. Methods in Pharmacology and Toxicology. Humana Press. https://doi.org/10.1007/978-1-59745-439-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-439-1_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-04-6

  • Online ISBN: 978-1-59745-439-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics