Reichlin, S. (1983) Somatostatin (part 1). New Engl. J. Med.
309,1495–1501.
PubMed
CrossRef
CAS
Google Scholar
Reichlin, S. (1983) Somatostatin (part 2). New Engl. J. Med.
309,1556–1563.
PubMed
CrossRef
CAS
Google Scholar
Guillemin, R. (1978) Peptides in the brain: the new endocrinology of the neuron. Science
202,390–402.
PubMed
CrossRef
CAS
Google Scholar
Reubi, J. C., Kvols, L. K., Krenning, E. P., and Lamberts, S. W. J. (1990) Distribution of somatostatin receptors in normal and tumor tissue. Metabolism
39(Suppl 2),78–81.
PubMed
CrossRef
CAS
Google Scholar
Bauer, W., Briner, U., Doepfner, W., et al. (1982) SMS 201-995. Life Sci.
31,1133–1140.
PubMed
CrossRef
CAS
Google Scholar
de Jong, M., Bernard, B. F., de Bruin, E., et al. (1998) Internalization of radiolabelled [DTPA0]octreotide and [DOTA0, Tyr3]octreotide: peptides for somatostatin receptor-targeted scintigraphy and radionuclide therapy. Nucl. Med. Commun.
19,283–288.
PubMed
CrossRef
Google Scholar
de Jong, M., Breeman, W. A. P., Bakker, W. H., et al. (1998) Comparison of 111In-labeled somatostatin analogues for tumor scintigraphy and radionuclide therapy. Cancer Res.
58,437–441.
PubMed
Google Scholar
Lewis, J. S., Lewis, M. R., Srinivasan, A., Schmidt, M. A., Wang, J., and Anderson, C. J. (1999) Comparison of four 64Cu-labeled somatostatin analogs in vitro and in a tumor-bearing rat model: Evaluation of new derivatives for PET imaging and targeted radiotherapy. J. Med. Chem. 42,1341–1347.
PubMed
CrossRef
CAS
Google Scholar
Krenning, E. P., Bakker, W. H., Kooij, P. P. M., et al. (1992) Somatostatin receptor scintigraphy with indium-111-DTPA-D-Phe-1-octreotide in man: metabolism, dosimetry and comparison with iodine-123-Tyr-3-octreotide. J. Nucl. Med.
33,652–658.
PubMed
CAS
Google Scholar
Anderson, C. J., Pajeau, T. S., Edwards, W. B., Sherman, E. L. C., Rogers, B. E., and Welch, M. J. (1995) In vitro and in vivo evaluation of copper-64-labeled octreotide conjugates. J. Nucl. Med.
36,2315–2325.
PubMed
CAS
Google Scholar
Anderson, C. J., Jones, L. A., Bass, L. A., et al. (1998) Radiotherapy, toxicity and dosimetry of copper-64-labeled TETA-octreotide in tumor-bearing rats. J. Nucl. Med.
39,1944–1951.
PubMed
CAS
Google Scholar
Lewis, J. S., Srinivasan, A., Schmidt, M. A., Schwarz, S. W., Jones, L. A., and Anderson, C. J. (1998) Radiotherapy and dosimetry of copper-64-TETA-Tyr3-octreotate in a somatostatin receptor positive tumor bearing animal model [abstract]. J. Nucl. Med.
39,104P.
Google Scholar
Anderson, C. J., Dehdashti, F., Cutler, P. D., et al. (2001) Copper-64-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors. J. Nucl. Med.
42,213–221.
PubMed
CAS
Google Scholar
Sprague, J. E., Peng, Y., Sun, X., et al. (2004) Preparation and biological evaluation of copper-64–labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin. Cancer Res.
10,8674–8682.
PubMed
CrossRef
CAS
Google Scholar
de Jong, M., Valkema, R., Kwekkeboom, D. J., and Krenning, E. P. (2004) Somatostatin receptor targeted-radio-ablation-of tumors. Endocrine Updates
24,233–249.
CrossRef
Google Scholar
Kwekkeboom, D. J., Mueller-Brand, J., Paganelli, G., et al. (2005) Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J. Nucl. Med.
46(suppl. 1),62S–66S.
PubMed
CAS
Google Scholar
Maecke, H. R., Hofmann, M., and Haberkorn, U. (2005) 68Ga-labeled peptides in tumor imaging. J. Nucl. Med.
46(suppl. 1),172S–178S.
PubMed
CAS
Google Scholar
McQuade, P., Rowland, D. J., Lewis, J. S., and Welch, M. J. (2005) Positron-emitting isotopes produced on biomedical cyclotrons. Curr. Med. Chem.
12,807–818.
PubMed
CrossRef
CAS
Google Scholar
Blower, P. J., Lewis, J. S., and Zweit, J. (1996) Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl. Med. Biol.
23,957–980.
PubMed
CrossRef
CAS
Google Scholar
McCarthy, D. W., Shefer, R. E., Klinkowstein, R. E., et al. (1997) Efficient production of high specific activity 64Cu using a biomedical cyclotron. Nucl. Med. Biol.
24,35–43.
PubMed
CrossRef
CAS
Google Scholar
McCarthy, D. W., Bass, L. A., Cutler, P. D., et al. (1999) High purity production and potential applications of copper-60 and copper-61. Nucl. Med. Biol.
26,351–358.
PubMed
CrossRef
CAS
Google Scholar
Sun, X., and Anderson, C. J. (2004) Production and applications of copper-64 radiopharmaceuticals. Meth. Enzymol.
386,237–261.
PubMed
CrossRef
CAS
Google Scholar
Vavere, A. L., and Welch, M. J. (2005) Preparation, biodistribution, and small animal pet of 45Ti-transferrin. J. Nucl. Med.
46,683–690.
PubMed
CAS
Google Scholar
Lewis, M. R., Reichert, D. E., Laforest, R., et al. (2002) Production and purification of gallium-66 for preparation of tumor-targeting radiopharmaceuticals. Nucl. Med. Biol.
29,701–706.
PubMed
CrossRef
CAS
Google Scholar
Szelecsenyi, F., Boothe, T. E., Tavano, T., Plitnikas, M. E., and Tarkanyi, F. (1994) Compilation of cross sections/thick target yields for 66Ga, 67Ga and 68Ga production using Zn targets up to 30 MeV proton energy. Appl. Radiat. Isot.
45,473–500.
CrossRef
CAS
Google Scholar
Reischl, G., Rosch, F., and Machulla, H. J. (2002) Electrochemical separation and purification of yttrium-86. Radiochim. Acta
90,225–228.
CrossRef
CAS
Google Scholar
Roesch, F., and Qaim, S. M. (1993) Nuclear data relevant to the production of the positron emitting technetium isotope 94mTc via the 94Mo(p,n)-reaction. Radiochim. Acta
62,115–121.
CAS
Google Scholar
Edwards, W. B., Fields, C. G., Anderson, C. J., Pajeau, T. S., Welch, M. J., and Fields, G. B. (1994) Generally applicable, convenient solid-phase synthesis and receptor affinities of octreotide analogs. J. Med. Chem.
37,3749–3757.
PubMed
CrossRef
CAS
Google Scholar
Achilefu, S., Jimenez, H. N., Dorshow, R. B., et al. (2002) Synthesis, in vitro receptor binding and in vivo evaluation of fluorescein and carbocyanine peptide-based optical contrast agents. J. Med. Chem.
45,2003–2015.
PubMed
CrossRef
CAS
Google Scholar
Li, W. P., Lewis, J. S., Kim, J., et al. (2002) DOTA-D-Tyr1-octreotate: a somatostatin analog for labeling with halogen and metal radionuclides for cancer imaging and therapy. Bioconjug. Chem.
13,721–728.
PubMed
CrossRef
CAS
Google Scholar
Mishra, A. K., Draillard, K., Faivrechauvet, A., Gestin, J. F., Curtet, C., and Chatal, J. F. (1996) A convenient, novel approach for the synthesis of polyaza macrocyclic bifunctional chelating agents. Tetrahedron Lett.
37,7515–7518.
CrossRef
CAS
Google Scholar
Yorke, E. D., Williams, L. E., Demidecki, A. J., Heidorn, D. B., Roberson, P. L., and Wessels, B. W. (1993) Multicellular dosimetry for beta-emitting radionuclides: autoradiography, thermoluminescent dosimetry and three-dimensional dose calculations. [review]. Med. Phys.
20,543–550.
PubMed
CrossRef
CAS
Google Scholar
Lewis, J. S., Laforest, R., Lewis, M. R., and Anderson, C. J. (2000) Comparative dosimetry of copper-64 and yttrium-90-labeled somatostatin analogs in a tumor-bearing rat model. Cancer Biothet. Radiopharm.
15,593–604.
CrossRef
CAS
Google Scholar
Breeman, W. A. P., de Jong, M., Visser, T. J., Erion, J. L., and Krenning, E. P. (2003) Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur. J. Nucl. Med. Mol. Imag.
30,917–920.
CrossRef
CAS
Google Scholar
Breeman, W. A. P., de Jong, M., de Blois, E., Bernard, B. F., Konijnenberg, M., and Krenning, E. P. (2005) Radiolabelling DOTA-peptides with 68Ga. Eur. J. Nucl. Med. Mol. Imag.
32,478–485.
CrossRef
CAS
Google Scholar
Longnecker, D. S., Lilja, H. S., French, J., Kuhlmann, E., and Noll, W. (1979) Transplantation of azaserine-induced carcinomas of pancreas in rats. Cancer Lett.
7,197–202.
PubMed
CrossRef
CAS
Google Scholar
Rosewicz, S., Vogt, D., Harth, N., et al. (1992) An amphicrine pancreatic cell line: AR42J cells combine exocrine and neuroendocrine properties. Eur. J. Cell Biol.
59,80–91.
PubMed
CAS
Google Scholar
Christophe, J. (1994) Pancreatic tumoral cell line AR42J: An amphicrine model. Am. J. Physiol.
266(6 pt 1),G963–G971.
PubMed
CAS
Google Scholar
Wipke, B. T., Wang, Z., Kim, J., McCarthy, T. J., and Allen, P. M. (2002) Dynamic visualization of a joint-specific autoimmune response through positron emission tomography. Nat. Immunol.
3,366–372.
PubMed
CrossRef
CAS
Google Scholar
Cherry, S. R., Shao, Y., Silverman, R. E., et al. (1997) Micropet: a high resolution pet scanner for imaging small animals. IEEE. Trans. Nucl. Sci.
44,1161–1166.
CrossRef
CAS
Google Scholar
Lewis, J. S., Achilefu, S., Garbow, J. R., Laforest, R., and Welch, M. J. (2002) Small animal imaging: current technology and perspectives for oncological imaging. Eur. J. Cancer
38,2173–2188.
PubMed
CrossRef
Google Scholar
Rowland, D. J., Lewis, J. S., and Welch, M. J. (2002) Molecular imaging: the application of small animal positron emission tomography. J. Cell. Biochem.
Suppl 39,110–115.
CrossRef
Google Scholar
Knoess, C., Siegel, S., Smith, A., et al. (2003) Performance evaluation of the microPET R4 pet scanner for rodents. Eur. J. Nucl. Med. Mol. Imag.
30,737–747.
CrossRef
Google Scholar
Tai, Y. C., Ruangma, A., Rowland, D. J., et al. (2005) Performance evaluation of the microPET FOCUS: a third-generation microPET scanner dedicated to animal imaging. J. Nucl. Med.
46,455–463.
PubMed
Google Scholar
Boswell, C. A., Sun, X., Niu, W., et al. (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J. Med. Chem.
47,1465–1474.
PubMed
CrossRef
CAS
Google Scholar
Sun, X., Wuest, M., Weisman, G. R., et al. (2002) Radiolabeling and in vivo behavior of copper-64-labeled cross-bridged cyclam ligands. J. Med. Chem.
45,469–477.
PubMed
CrossRef
CAS
Google Scholar