Skip to main content

Functional Genomics and Structural Biology in the Definition of Gene Function

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 513))

Summary

By mid-2007, the three-dimensional (3D) structures of some 45,000 proteins have been solved, over a period where the linear structures of millions of genes have been defined. Technical challenges associated with X-ray crystallography are being overcome and high-throughput methods both for crystallization of proteins and for solving their 3D structures are under development. The question arises as to how structural biology can be integrated with and adds value to functional genomics programs. Structural biology will assist in the definition of gene function through the identification of the likely function of the protein products of genes. The 3D information allows protein sequences predicted from DNA sequences to be classified into broad groups, according to the overall ‘fold’, or 3D shape, of the protein. Structural information can be used to predict the preferred substrate of a protein, and thereby greatly enhance the accurate annotation of the corresponding gene. Furthermore, it will enable the effects of amino acid substitutions in enzymes to be better understood with respect to enzyme function and could thereby provide insights into natural variation in genes. If the molecular basis of transcription factor–DNA interactions were defined through precise 3D knowledge of the protein–DNA binding site, it would be possible to predict the effects of base substitutions within the motif on the specificity and/or kinetics of binding. In this chapter, we present specific examples of how structural biology can provide valuable information for functional genomics programs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chothia, C. (1992) One thousand families for the molecular biologist. Nature 357, 543–544.

    Article  PubMed  CAS  Google Scholar 

  2. Coutinho, P.M. and Henrissat, B. (1999) Carbohydrate-active enzymes: an integrated database approach, in Recent Advances in Carbohydrate Bioengineering (Gilbert, H.Y., Davies, G., Henrissat, B., and Svensson, B., eds.), The Royal Society of Chemistry, Cambridge, pp. 3–12.

    Google Scholar 

  3. Tan, X., Calderon-Villalobos, L.I.A., Michael, S., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N. (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645.

    Article  PubMed  CAS  Google Scholar 

  4. Sali, A., Glaeser, R., Earnest, T., and Baumeister, W. (2003) From words to literature in structural proteomics. Nature 422, 216–225.

    Article  PubMed  CAS  Google Scholar 

  5. Hubbell, W.L., Gross, A., Langen, R., and Lietzow, M.A. (1998) Recent advances in site-directed spin labelling of proteins. Curr. Opin. Struct. Biol. 8, 649–656.

    Article  PubMed  CAS  Google Scholar 

  6. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000) The protein data bank. Nucleic Acids Res. 28, 235–242.

    Article  PubMed  CAS  Google Scholar 

  7. Farrokhi, N., Hrmova, M., Burton, R.A., and Fincher, G.B. (2007) Heterologous and cell free expression systems, in Methods in Molecular Biology: Plant Genomics (Gustafson P., ed.), (in press).

    Google Scholar 

  8. Hrmova, M., Varghese, J.N., Høj, P.B., and Fincher, G.B. (1998) Crystallization and preliminary X-ray analysis of β-glucan exohydrolase isoenzyme ExoI from barley (Hordeum vulgare). Acta Cryst. D54, 687–689.

    CAS  Google Scholar 

  9. Sali, A. and Blundell, T.L. (1993) Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815.

    Article  PubMed  CAS  Google Scholar 

  10. Sanchez, R. and Sali, A. (1998) Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc. Natl. Acad. Sci. USA 95, 13597–13602.

    Article  PubMed  CAS  Google Scholar 

  11. Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291.

    Article  CAS  Google Scholar 

  12. Sippl, M.J. (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17, 355–362.

    Article  PubMed  CAS  Google Scholar 

  13. Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst. A47, 110–119.

    CAS  Google Scholar 

  14. Sali, A. and Chiu, W. (2005) Macromolecular assemblies highlighted. Struct. Fold. Des. 13, 339–341.

    Article  CAS  Google Scholar 

  15. Brown, D. and Sjölander, K. (2006) Functional classification using phylogenomic inference. PLoS Comput. Biol. 2, 479–483.

    Article  CAS  Google Scholar 

  16. Sjölander, K. (2004) Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics 20, 170–179.

    Article  PubMed  Google Scholar 

  17. Eddy, S.R. (2004) What is a hidden markov model? Nat. Biotechnol. 22, 1315–11316.

    Article  PubMed  CAS  Google Scholar 

  18. Murzin A.G., Brenner S.E., Hubbard T., and Chothia C. (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540.

    PubMed  CAS  Google Scholar 

  19. Pearl, F.M., Bennett, C.F., Bray, J.E., Harrison, A.P., Martin, N., Shepherd, A., Sillitoe, I., Thornton, J., and Orengo, C.A. (2003) The CATH database: an extended protein family resource for structural and functional genomics. Nucleic Acids Res. 31, 452–455.

    Article  PubMed  CAS  Google Scholar 

  20. Marti-Renom, M.A., Madhusudhan, M.S., Fisher, A., Rost, B., and Sali, A. (2002) Reliability of assessment of protein structure prediction methods. Struct. Fold. Des. 10, 430–435.

    Article  Google Scholar 

  21. Rychlewski, L., Fischer, D., and Elofsson, A. (2003) LiveBench-6: large-scale automated evaluation of protein structure prediction servers. Proteins 53 (Suppl 6), 542–547.

    Article  PubMed  CAS  Google Scholar 

  22. Shimodaira, H. and Hasegawa, M. (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17, 1246–1247.

    Article  PubMed  CAS  Google Scholar 

  23. Ginalski, K., Elofsson, A., Fischer, D., and Rychlewski, L. (2003) 3D-Jury: a simple approach to improve protein structure predictions. Bioinformatics 19, 1015–1018.

    Article  PubMed  CAS  Google Scholar 

  24. Rost, B., Yachdav, G., and Liu, J. (2004) The predictProtein server. Nucleic Acids Res. 32, W321–W326.

    Article  PubMed  CAS  Google Scholar 

  25. Brown, S.D., Gerlt, J.A., Seffernick, J.L., and Babbitt, P.C. (2006) A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biol. 7, R8.

    Article  PubMed  CAS  Google Scholar 

  26. Levitt, M. (2007) Growth of novel protein structural data. Proc. Natl. Acad. Sci. USA 104, 3183–3188.

    Article  PubMed  CAS  Google Scholar 

  27. Armstrong, J.D., Pocklington, A.J., Cumiskey, M.A., and Grant, S.G.N. (2006) Reconstructing protein complexes: from proteomics to system biology. Proteomics 6, 4724–4731.

    Article  PubMed  CAS  Google Scholar 

  28. Harvey, A.J., Hrmova, M., DeGori, R., Varghese, J.N., and Fincher, G.B. (2000) Comparative modeling of the three-dimensional structures of family 3 glycoside hydrolases. Proteins Struct. Funct. Genet. 41, 257–269.

    Article  PubMed  CAS  Google Scholar 

  29. Hrmova, M., Harvey, A.J., Wang, J., Shirley, N.J., Jones, G.P., Høj, P.B., and Fincher, G.B. (1996) Barley β-d-glucan exohydrolases with β-d-glucosidase activity. Purification and determination of primary structure from a cDNA clone. J. Biol. Chem. 271, 5277–5286.

    Article  PubMed  CAS  Google Scholar 

  30. Varghese, J.N., Hrmova, M., and Fincher, G.B. (1999) Three-dimensional structure of a barley β-d-glucan exohydrolase, a family 3 glycosyl hydrolase. Struct. Fold Des. 7, 179–190.

    Article  CAS  Google Scholar 

  31. Hrmova, M., Varghese, J.N., De Gori, R., Smith, B.J., Driguez, H., and Fincher, G.B. (2001) Catalytic mechanisms and reaction intermediates along the hydrolytic pathway of plant β-d-glucan glucohydrolase. Struct. Fold Des. 9, 1015–1016.

    Article  Google Scholar 

  32. Hrmova, M., De Gori, R., Smith, B.J., Fairweather, J.K., Driguez, H., Varghese, J.N., and Fincher, G.B. (2002) Structural basis for broad substrate specificity in higher plant β-d-glucan glucohydrolases. Plant Cell 14, 1033–1052.

    Article  PubMed  CAS  Google Scholar 

  33. Davies, G. and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases. Struct. Fold Des. 7, 853–859.

    Article  Google Scholar 

  34. Ikegami, M., Sato, T., Suzuki, K., Noguchi, K., Okuyama, K., Kitamura, S., Takeo, K., and Ohno, S. (1995) Molecular and crystal structures of 2,3,4,6,1′,3′,4′,6′-octa-O-acetyl-β-sophorose, methyl 2,3,4,6,3′,4′,6′-hepta-O-acetyl-β-sophoroside, and methyl 2,3,4,6,3′,4′-hexa-O-acetyl-6′-deoxy-β-sophoroside. Carbohydr. Res. 271, 137–150.

    Article  CAS  Google Scholar 

  35. Rohrer, D.C., Sarko, A., Bluhm, T.L., and Lee, Y.N. (1980) The structure of gentiobiose. Acta Crystallogr. B36, 650–654.

    CAS  Google Scholar 

  36. Hrmova, M., Streltsov, V.A., Smith, B.J., Vasella, A., Varghese, J.N., and Fincher, G.B. (2005) Structural rationale for low nanomolar binding of transition state mimics to a family GH3 β-d-glucan glucohydrolase from barley. Biochemistry (USA) 44, 16529–16539.

    Article  CAS  Google Scholar 

  37. Hrmova, M. and Fincher, G.B. (2007) Dissecting the catalytic mechanism of a plant β-d-glucan glucohydrolase through structural biology using inhibitors and substrate analogues. Carbohydr. Res. 342, 1613–1623

    Article  PubMed  CAS  Google Scholar 

  38. Grisshammer, R. (2006) Understanding recombinant expression of membrane proteins. Curr. Opin. Biotechnol. 17, 337–340.

    Article  PubMed  CAS  Google Scholar 

  39. Link, A.J. and Georgiou, G. (2007) Advances and challenges in membrane protein expression. AIChE J. 53, 752–756.

    Article  CAS  Google Scholar 

  40. Sizer, P.J., Miller, A., and Watts, A. (1987) Functional reconstitution of the integral membrane proteins of influenza virus into phospholipid liposomes. Biochemistry 26, 5106–5113.

    Article  PubMed  CAS  Google Scholar 

  41. Käsermann, F. and Kempf, C. (2006) Virus membrane proteins and proteinaceous pores. Future Virol. 1, 823–831.

    Article  Google Scholar 

  42. Lichtenberg, D. and Barenholtz, Y. (1988) Liposomes: preparation, characterization and preservation. Methods Biochem. Anal. 33, 337–462.

    Article  PubMed  CAS  Google Scholar 

  43. Colletier, J.P., Chaize, B., Winterhalter, M., and Fournier, D. (2002) Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. 2, 9–16.

    Article  PubMed  Google Scholar 

  44. Levy, D., Chami, M., and Rigaud J.L. (2001) Two-dimensional crystallization of membrane proteins: the lipid layer strategy. FEBS Lett. 504, 187–193.

    Article  PubMed  CAS  Google Scholar 

  45. Cherezov, V., Fersi, H., and Caffrey, M. (2001) Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase. Biophys. J. 81, 225–242.

    Article  PubMed  CAS  Google Scholar 

  46. Byrne, B. and Iwata, S. (2002) Membrane protein complexes. Curr. Opin. Struct. Biol. 2, 239–243.

    Article  Google Scholar 

  47. Kornberg, R.D. and Darst, S.A. (1991) Two dimensional crystals of proteins on lipid layers. Curr. Opin. Struct. Biol. 1, 632–646.

    Article  Google Scholar 

  48. Hacksell, I., Rigaud, J.-L., Purhonen, P., Pourcher, T., Hebert, H., and Leblanc, G. (2002) Projection structure at 8 Å resolution of the melibiose permease, a Na-cotransporter from. E coli. EMBO J. 21, 3569–3574.

    CAS  Google Scholar 

  49. Zhuang, J.P., Prive, G.G., Werner, G.E., Ringler, P., Kaback, H.R., and Engel, A. (1999). Two-dimensional crystallization of Escherichia coli lactose permease. J. Struct. Biol. 125, 63–75.

    Article  PubMed  CAS  Google Scholar 

  50. Landau, E.M. and Rosenbusch, J.P. (1996) Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proc. Natl. Acad. Sci. USA 93, 14532–14535.

    Article  PubMed  CAS  Google Scholar 

  51. Kolbe, M., Besir, H., Essen, L.O., and Oesterhelt, D. (2000) Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science 288, 1390–1396.

    Article  PubMed  CAS  Google Scholar 

  52. Leucke, H., Schobert, B., Richter, H., Cartailler, J., and Lanyi, J. (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J. Mol. Biol. 291, 899–911.

    Article  Google Scholar 

  53. da Fonseca, P., Morris, E.P., Hankamer, B., and Barber, J. (2002) Electron crystallographic study of photosystem II of the cyanobacterium Synechococcus elongates. Bio-chemistry 41, 5163–5167.

    CAS  Google Scholar 

  54. Tornroth-Horsefield, S., Wang, Y., Hedfalk, K., Johanson, U., Karlsson, M., Tajkhorshid, E., Neutze, R., and Kjellbom, P. (2006) Structural mechanism of plant aquaporin gating. Nature 439, 688–694.

    Article  PubMed  CAS  Google Scholar 

  55. Kühlbrandt, W. (1984) Three-dimensional structure of the light-harvesting chlorophyll a/b-protein complex. Nature 307, 478–480.

    Article  Google Scholar 

  56. Walden, H., Podgoski, M.S., and Schulman, B.A. (2003) Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334.

    Article  PubMed  CAS  Google Scholar 

  57. Kol, S., Turrell, B.R., de Keyzer, J., van der Laan, M., Nouwen, N., and Driessen, A.J. (2006) YidC-mediated membrane insertion of assembly mutants of subunit c of the F1F0 ATPase. J. Biol. Chem. 281, 29762–29768.

    Article  PubMed  CAS  Google Scholar 

  58. Stewart, R.J., Varghese, J.N., Garrett, T.P.J., Høj, P.B., and Fincher, G.B. (2001) Mutant barley (1,3;1,4)- β-glucan endohydrolases with enhanced thermostability. Protein Eng. 14, 245–253.

    Article  PubMed  CAS  Google Scholar 

  59. Varghese, J.N., Garrett, T.P.J., Colman, P.M., Chen, L., Hoj, P.B., and Fincher, G.B. (1994) Three-dimensional structures of 2 plant beta-glucan endohydrolases with distinct substrate specificities. Proc. Natl. Acad. Sci. USA 91, 2785–2789.

    Article  PubMed  CAS  Google Scholar 

  60. Høj, P.B. and Fincher, G.B. (1995) Molecular evolution of plant β-glucan endohydrolases. Plant J. 7, 367–379.

    Article  PubMed  Google Scholar 

  61. Bamforth, C.W. (1994) β-Glucan and β-glucanases in malting and brewing: practical aspects. Brew. Dig. 69, 12–16.

    Google Scholar 

  62. Mori, H., Bak-Jensen, K.S., and Svensson, B. (2002) Barley alpha-amylase Met53 situated at the high-affinity subsite –2 belongs to a substrate binding motif in the beta— > alpha loop 2 of the catalytic (beta/alpha)8-barrel and is critical for activity and substrate specificity. Eur. J. Biochem. 269, 5377–5390.

    Article  PubMed  CAS  Google Scholar 

  63. Topaloglou, T. (2006) Informatics solutions for high-throughput proteomics. Drug Discov. Today 11, 509–516.

    Article  PubMed  CAS  Google Scholar 

  64. Forstner, M., Leder, L., and Mayr, L.M. (2007) Optimization of protein expression systems for modern drug discovery. Expert Rev. Proteomics 4, 67–78.

    Article  PubMed  CAS  Google Scholar 

  65. Wentz A.E. and Shusta E.V. (2007) A novel high throughput screen reveals yeast genes that increase heterologous protein secretion. Appl. Environ. Microbiol. 73, 1189–1198.

    Article  PubMed  CAS  Google Scholar 

  66. Peti, W. and Page, R. (2007) Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr. Purif. 51, 1–10

    Article  PubMed  CAS  Google Scholar 

  67. Miyatake, H., Kim, S.-H., Motegi, I., Matsuzaki, H., Kitahara, H., Higuchi, A., and Miki, K. (2005) Development of a fully automated molecular crystallization/observation robotic system, HTS-80. Acta Crystallogr. D61, 658–663.

    CAS  Google Scholar 

  68. D'Arcy, A., Villard, F., and Marsh, M. (2007) An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D63, 550–554.

    Google Scholar 

  69. Charles, M., Veesler, S., and Bonneté, F. (2006) MPCD: a new interactive on-line crystallization data bank for screening strategies. Acta Crystallogr. D62, 1311–1318.

    CAS  Google Scholar 

  70. Beteva, A., Cipriani, F., Cusack, S., Delageniere, S., Gabadinho, J., Gordon, E.J., Guijarro, M., Hall, D.R., Larsen, S., Launer, L., Lavault, C.B., Leonard, G.A., Mairs, T., McCarthy, A., McCarthy, J., Meyer, J., Mitchell, E., Monaco, S., Nurizzo, D., Pernot, P., Pieritz, R., Ravelli, R.G., Rey, V., Shepard, W., Spruce, D., Stuart, D.I., Svensson, O., Theveneau, P., Thibault, X., Turkenburg, J., Walsh, M., and McSweeney, S.M. (2006) High-throughput sample handling and data collection at synchrotrons: embedding the ESRF into the high-throughput gene-to-structure pipeline. Acta Crystallogr. D62, 1162–1169.

    CAS  Google Scholar 

  71. Terwilliger, T. (2004) SOLVE and RESOLVE: automated structure solution, density modification, and model building. J. Synchrotron Radiat. 11, 49–52.

    Article  PubMed  CAS  Google Scholar 

  72. Adams, P.D., Gopal, K., Grosse-Kunstleve, R.W., Hung, L.-W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Pai, R.K., Read, R.J., Romo, T.D., Sacchettini, J.C., Sauter, N.K., Storoni, L.C., and Terwilliger, T. (2006) Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchrotron Radiat. 11, 53–55.

    Article  CAS  Google Scholar 

  73. Lamzin, V.S. and Perrakis, A. (2002) Current state of automated crystallographic data analysis. Nat. Struct. Biol. 7, 978–981.

    Article  Google Scholar 

  74. Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D50, 760–763.

    Google Scholar 

  75. Gopal, K., McKee, E.W., Romo, T., Pai, R., Smith, J., Sacchettini, J.C., and Ioerger, T.R. (2006) Crystallographic model-building on the web. Bioinformatics 23, 375–377.

    Article  PubMed  CAS  Google Scholar 

  76. McKee, E.W., Kanbi, L.D., Childs, K.L., Grosse-Kunstleve, R.W., Adams, P.D., Sacchettini, J.C., and Ioerger, T.R. (2005) FINDMOL: automated identification of macromolecules in electron-density maps. Acta Crystallogr. D61, 1514–1520.

    CAS  Google Scholar 

  77. Callebaut, I., Labesse, G., Durand, P., Poupon, A., Canard, L., Chomilier, J., Henrissat, B., and Morno, J.P. (1997) Deciphering protein sequence information through hydrophobic cluster analysis (hca) – current status and perspectives [Review]. Cell Mol. Life Sci. 53, 621–645.

    Article  PubMed  CAS  Google Scholar 

  78. Mirkovic, N., Li, Z., Parnassa, A., and Murray, D. (2006) Strategies for high-throughput comparative modelling: applications to leverage analysis in structural genomics and protein family organization. Proteins 66, 766–777.

    Article  CAS  Google Scholar 

  79. Pieper, U., Eswar, N., Braberg, H., Madhusudhan, M.S., Davis, F.P., Stuart, A.C., Mirkovic, N., Rossi, A., Marti-Renom, M.A., Fiser, A., Webb, B., Greenblatt, D., Huang, C.C., Ferrin, T.E., and Sali, A. (2006) MODBASE: a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 34, D291–D295.

    Article  PubMed  CAS  Google Scholar 

  80. Yura, K., Yamaguchi, A., and Go, M. (2006) Coverage of whole proteome by structural genomics observed through protein homology modeling database. J. Struct. Func. Genomics 7, 65–76.

    Article  CAS  Google Scholar 

  81. Lee, R.C., Hrmova, M., Burton, R.A., Lahnstein, J., and Fincher, G.B. (2003) An α-l-arabinofuranosidase and a β-d-xylosidase from barley: purification, characterization and primary structures J. Biol. Chem. 278, 5377–5387.

    Article  PubMed  CAS  Google Scholar 

  82. Harrison, S.S. (2004) Whither structural biology? Nat. Struct. Mol. Biol. 11, 12–15.

    Article  PubMed  CAS  Google Scholar 

  83. Kornberg, A. (2004) Biochemistry matters. Nat. Struct. Mol. Biol. 11, 493.

    Article  PubMed  CAS  Google Scholar 

  84. Abad-Zapatero, C. (2007) Notes on protein crystallography: quo vadis structural biology? Acta Crystallogr. D54, 687–689.

    Google Scholar 

  85. Dauter, Z. (2006) Current state and prospects of macromolecular crystallography. Acta Crystallogr. D62, 1–11.

    CAS  Google Scholar 

  86. Moffat, K. (1997) Laue diffraction. Methods Enzymol. 277, 433–447.

    Article  PubMed  CAS  Google Scholar 

  87. Hajdu, J., Neutze, R., Sjögren, T., Edman, K., Szöke, A., Wilmouth, R.C., and Wilmot, C.M. (2000) Analyzing protein function on four dimensions. Nat. Struct. Biol. 7, 1006–1012.

    Article  PubMed  CAS  Google Scholar 

  88. Schlichting, I. and Chu, K. (2000) Trapping intermediates in the crystal: ligand binding to myoglobin. Curr. Opin. Struct. Biol. 10, 744–752.

    Article  PubMed  CAS  Google Scholar 

  89. Srajer, V., Teng, T.Y., Ursby, T., Pradervand, C., Ren, Z., Adachi, S., Schildkamp, W., Bourgeois, D., Wulff, M., and Moffat, K. (1996) Photolysis of the carbon-monoxide complex of myoglobin-nanosecond time-resolved crystallography. Science 274, 1726–1729.

    Article  PubMed  CAS  Google Scholar 

  90. Bourgeois, D., Vallone, B., Schotte, F., Arcovito, A., Miele, A.E., Csiara, G., Wulf, M., Anfinrud, P., and Brunori, M. (2003) Complex landscape of protein structural dynamics unveiled by nanosecond Laue crystallography. Proc. Natl. Acad. Sci. USA 100, 8704–8709.

    Article  PubMed  CAS  Google Scholar 

  91. Schotte, F., Soman, J., Olson, J.S., Wulff, M., and Anfinrud, O.A. (2004) Picosecond time-resolved crystallography: probing protein function in real time. J. Struct. Biol. 147, 235–246.

    Article  PubMed  CAS  Google Scholar 

  92. Schmidt, M., Pahl, R., Srajer, V., Anderson, S., Ren, Z., Ihee, H., Rajagopal, S., and Moffat, K. (2004) Protein kinetics: structures of intermediates and reaction mechanism from time-resolved x-ray data. Proc. Natl. Acad. Sci. USA 101, 4799–4804.

    Article  PubMed  CAS  Google Scholar 

  93. Ihee, H., Rajagopal, S., Srajer, V., Pahl, R., Anderson, S., Schmidt, M., Schotte, F., Anfinrud, P.A., Wulff, M., and Moffat, K. (2005) Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Proc. Natl. Acad. Sci. USA 102, 7145–7150.

    Article  PubMed  CAS  Google Scholar 

  94. Baxter, R.H.G., Ponomarenko, N., Pahl, R., Moffat, K., and Norris, J.R. (2004) Time-resolved crystallographic studies of light-induced structural changes in the photosynthetic reaction centre. Proc. Natl. Acad. Sci. USA 101, 5982–5987.

    Article  PubMed  CAS  Google Scholar 

  95. Stoddard, B.L. (2001) Accumulation and trapping of catalytic intermediates for crystallographic structure determination. Methods 24, 126–138.

    Article  CAS  Google Scholar 

  96. Schlichting, I. and Goody, R.S. (1997) Triggering methods in crystallographic enzyme kinetics. Methods Enzymol. 277, 467–490.

    Article  PubMed  CAS  Google Scholar 

  97. Scheidig, A.J., Burmester, C., and Goody, R.S. (1998) Use of caged nucleotides to characterize unstable intermediates by X-ray crystallography. Methods Enzymol. 291, 251–264.

    Article  PubMed  CAS  Google Scholar 

  98. Ren, Z. and Moffat, K. (1995) Quantitative analysis of synchrotron Laue diffraction patterns in macromolecular crystallography. J. Appl. Crystallogr. 28, 461–481.

    Article  CAS  Google Scholar 

  99. Yan, X., Ren, Z., and Moffat, K. (1998) Structure refinement against synchrotron Laue data: strategies for data collection and reduction. Acta. Crystallogr. D54, 367–377.

    Google Scholar 

  100. Hrmova, M., De Gori, R., Smith, B J., Vasella, A., Varghese, J.N., and Fincher, G.B. (2004) Three-dimensional structure of the barley β-d-glucan glucohydrolase in complex with a transition-state mimic. J. Biol. Chem. 279, 4970–4980.

    Article  PubMed  CAS  Google Scholar 

  101. Chapman, H.N., Barty, A., Bogan, M.J., Boutet, S., Frank, M., Hau-Riege, S.P., Marchesini, S., Woods, B.W., Bajt, S., Benner, W.H., London, R.A., Plonjes, E., Kuhlmann, M., Treusch, R., Dusterer, S., Tschentscher, T., Schneider, J.R., Spiller, E., Moller, T., Bostedt, C., Hoener, M., Shapiro, D.A., Hodgson, K.O., van der Spoel, D., Burmeister, F., Bergh, M., Caleman, C., Huldt, G., Seibert, M.M., Maia, F.R.N.C., Lee, R.W., Szoke, A., Timneanu, N., and Hajdu, J. (2006) Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2, 839–843.

    Article  CAS  Google Scholar 

  102. Von Dreele, R.B. (2005) Binding of N-acetylglucosamine oligosaccharides to hen egg-white lysozyme: a powder diffraction study. Acta Crystallogr. D61, 22–32.

    CAS  Google Scholar 

  103. Dickinson, M., Farman, G., Frye, M., Bekyarova, T., Gore, D., Maughan, D., and Irving, T. (2005) Molecular dynamics of cyclically contracting insect flight muscle in vivo. Nature 433, 330–333.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by grants from the Australian Research Council, the Grains Research and Development Corporation and the South Australian state government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hrmova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hrmova, M., Fincher, G. (2009). Functional Genomics and Structural Biology in the Definition of Gene Function. In: Gustafson, J., Langridge, P., Somers, D. (eds) Plant Genomics. Methods in Molecular Biology™, vol 513. Humana Press. https://doi.org/10.1007/978-1-59745-427-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-427-8_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-997-0

  • Online ISBN: 978-1-59745-427-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics