Skip to main content

Rapid Electrical Lysis of Bacterial Cells in a Microfluidic Device

  • Protocol
Microchip-Based Assay Systems

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 385))

Abstract

Electrical lysis of biological cells on a microfluidic platform has evoked significant interest because of its applications in rapid recovery of intracellular contents such as nucleic acids or proteins without introducing lytic agents. Applying a direct current (DC) field for cell lysis typically requires field strength of 1–10 kV/cm, which is dependent on the cell type: prokaryotes or eukaryotes. Bubble generation and Joule heating can often be induced under such high field strengths. In this study we fabricated a simple microfluidic device using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance, which was able to lyse green fluorescent protein (GFP)-expressing Escherichia coli cells under continuous DC voltage while cells were flowing through the channels. The cell lysis only happened in a defined section of a microfluidic channel because of local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis severalfold. The cell lysis was verified by plate count on nutrient agar plates and by fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersson, H. and van den Berg. A. (2003) Microfluidic devices for cellomics: a review. Sens. Actuators B. 92, 315–325.

    Article  Google Scholar 

  2. Waters, L. C., Jacobson, S. C., Kroutchinina, N., Khandurina, J., Foote, R. S., and Ramsey, J. M. (1998) Microchip device for cell lysis, multiplex PCR amplification, and electrophoretic sizing. Anal. Chem. 70, 158–162.

    Article  CAS  Google Scholar 

  3. Belgrader, P., D. Hansford, G. A., Kovacs, K., et al. (1999) A minisonicator to rapidly disrupt bacterial spores. Anal. Chem. 71, 4232–4236.

    Article  CAS  Google Scholar 

  4. Taylor, M. T., Belgrader, P., Furman, B. J., Pourahmadi, F., Kovacs, G. T. A., and Northrup, M. A. (2001) Lysing Bacterial Spores by Sonication Through a Flexible Interface in a Microfluidic System. Anal. Chem. 73, 492–496.

    Article  CAS  Google Scholar 

  5. Di Carlo, D., Jeong, K. H., and Lee, L. P. (2003) Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 3, 287–291.

    Article  Google Scholar 

  6. Li, P. C. H. and Harrison, D. J. (1997) Transport, manipulation, and reaction of biological cells on-chip using electrokinetic effects. Anal. Chem. 69, 1564–1568.

    Article  CAS  Google Scholar 

  7. Wu, H. K., Wheeler, A., and Zare, R. N. (2004) Chemical cytometry on a picoliter-scale integrated microfluidic chip. Proc. Nat. Acad. Sci. USA 101, 12,809–12,813.

    Article  CAS  Google Scholar 

  8. Hong, J. W., Studer, V., Hang, G., Anderson, W. F., and Quake, S. R. (2004) A nanoliter-scale nucleic acid processor with parallel architecture. Nat. Biotechnol. 22, 435–439.

    Article  CAS  Google Scholar 

  9. Cheng, J., Sheldon, E. L., Wu, L., et al. (1998) Electric field controlled preparation and hybridization analysis of DNA/RNA from E. coli on microfabricated bioelectronic chips. Nat. Biotechnol. 16, 541–546.

    Article  CAS  Google Scholar 

  10. Lee, S. W. and Tai, Y. C. (1999) A micro cell lysis device. Sens. Actuators, A. 73, 74–79.

    Article  Google Scholar 

  11. McClain, M. A., Culbertson, C. T., Jacobson, S. C., Allbritton, N. L., Sims, C. E., and Ramsey, J. M. (2003) Microfluidic devices for the high-throughput chemical analysis of cells. Anal. Chem. 75, 5646–5655.

    Article  CAS  Google Scholar 

  12. Gao, J., Yin, X. F., and Fang, Z. L. (2004) Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52.

    Article  CAS  Google Scholar 

  13. Lu, H., Schmidt, M. A., and Jensenm, K. F. (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5, 23–29.

    Article  CAS  Google Scholar 

  14. Munce, N. R., Li, J., Herman, P. R., and Lilge. L. (2004) Microfabricated system for parallel single-cell capillary electrophoresis. Anal. Chem. 76, 4983–4989.

    Article  CAS  Google Scholar 

  15. Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J., and Lee, L. P. (2005) A single cell electroporation chip. Lab Chip 5, 38–43.

    Article  CAS  Google Scholar 

  16. Tien, H. T. and Ottova, A. (2003) The bilayer lipid membrane (BLM) under electrical fields. IEEE Trans. Dielectr. Electr. Insul. 10, 717–727.

    Article  CAS  Google Scholar 

  17. Wang, H. Y., Bhunia, A. K., and Lu, C. (2006) A microfluidic flow-through device for high throughput electrical lysis of bacterial cells based on continuous dc voltage. Biosens. Bioelectron. 22, 582–588.

    Article  CAS  Google Scholar 

  18. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., and Whitesidesm G. M. (1998) Rapid prototyping of microfluidic systems in poly (dimethylsiloxane). Anal. Chem. 70, 4974–4984.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wang, HY., Banada, P.P., Bhunia, A.K., Lu, C. (2007). Rapid Electrical Lysis of Bacterial Cells in a Microfluidic Device. In: Floriano, P.N. (eds) Microchip-Based Assay Systems. Methods in Molecular Biology™, vol 385. Humana Press. https://doi.org/10.1007/978-1-59745-426-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-426-1_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-588-0

  • Online ISBN: 978-1-59745-426-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics