Skip to main content

Preparation of Glycosylated Amino Acids Suitable for Fmoc Solid-Phase Assembly

  • Protocol
Peptide-Based Drug Design

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 494))

Summary

Many biological interactions and functions are mediated by glycans, consequently leading to the emerging importance of carbohydrate and glycoconjugate chemistry in the design of novel drug therapeutics. Despite the challenges that carbohydrate moieties bring into the synthesis of glycopeptides and glycoproteins, considerable progress has been made during recent decades. Glycopeptides carrying many simple glycans have been chemically synthesized, enzymatic approaches have been utilized to introduce more complex glycans, and most recently native chemical ligation has enabled synthesis of glycoproteins from well-designed peptide and glycopeptide building blocks. Currently, general synthetic methodology for glycopeptides relies on preformed glycosylated amino acids for the stepwise solid-phase peptide synthesis. The formation of glycosidic bonds is of fundamental importance in the assembly of glycopeptides. As such, every glycosylation has to be regarded as a unique problem, demanding considerable systematic research. In this chapter we will summarize the most common chemical methods for the stereoselective synthesis of N- and O-glycosylated amino acids. The particular emphasis will be given to the preparation of building blocks for use in solid-phase glycopeptide synthesis based on the 9-fluorenylmethoxycarbonyl (Fmoc) protective group strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seitz, O. (2000) Glycopeptide synthesis and the effects of glycosylation on protein structure and activity. Chem. BioChem. 1, 214–246.

    CAS  Google Scholar 

  2. Lis, H. and Sharon, N. (1993) Protein glycosylation—structural and functional aspects. Eur. J. Biochem. 218, 1–27.

    Article  CAS  PubMed  Google Scholar 

  3. Dwek, R. (1999) Glycobiology: toward understanding the function of sugars. Chem. Rev. 96, 683–720.

    Article  Google Scholar 

  4. Varki, A. (1993) Biological roles of oligosaccharides: All the theories are correct. Glycobiology 3, 97–130.

    Article  CAS  PubMed  Google Scholar 

  5. Bertozzi, C. and Kiessling, L. (2001) Chemical glycobiology. Science 291, 2357–2364.

    Article  CAS  PubMed  Google Scholar 

  6. Wyatt, R. and Sodroski, J. (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280, 1884–1888.

    Article  CAS  PubMed  Google Scholar 

  7. Geyer, H. and Geyer, R. (2000) Glycobiology of viruses. Carbohydr. Chem. Biol. 4, 821–838.

    Article  CAS  Google Scholar 

  8. Troy, F. (1992) Polysialylation: from bacteria to brain. Glycobiology 2, 5–23.

    Article  CAS  PubMed  Google Scholar 

  9. Rostand, K. and Esko, J. (1997) Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65, 1–8.

    CAS  PubMed  Google Scholar 

  10. Moncada, D., Kammanadiminti, S., and Chadee, K. (2003) Mucin and toll-like receptors in host defense against intestinal parasites. Trends Parasitol. 19, 305–311.

    Article  CAS  PubMed  Google Scholar 

  11. Van Kooyk, Y., Engering, A., Lkkerkerker, A.N., Ludwig, I.S., and Geijtenbeck, T.B. (2004) Pathogens use carbohydrates to escape immunity induced by dendritic cells. Curr. Opin. Immun. 16, 488–493.

    Article  Google Scholar 

  12. Takano, R., Muchmore, E., and Dennis, J. (1994) Sialyation and malignant potential in tumor cell glycosylation mutants. Glycobiology 4, 665–674.

    Article  CAS  PubMed  Google Scholar 

  13. Muramatsu, T. (1993) Carbohydrate signals in metastasis and prognosis of human carcinoma. Glycobiology 3, 294–296.

    Article  Google Scholar 

  14. Kim, Y. and Varki, A. (1997) Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconjugate J. 14, 569–576.

    Article  CAS  Google Scholar 

  15. Dennis, J., Granovsky, M., and Warren, C.E. (1999) Glycoprotein glycosylation and cancer progression. Biochim. Biophys. Acta 1473, 21–34.

    CAS  PubMed  Google Scholar 

  16. Hakomori, S. (1989) Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv.Cancer Res. 52, 257–331.

    Article  CAS  PubMed  Google Scholar 

  17. Lowe, J. (2001) Glycosylation, immunity and autoimmunity. Cell 104, 809–812.

    Article  CAS  PubMed  Google Scholar 

  18. Gleeson, P. (1994) Glycoconjugates in autoimmunity. Biochim. Biophys. Acta 1197, 237–255.

    PubMed  Google Scholar 

  19. Rudd, P., Elliott, T., Cresswell, P., Wilson, I., and Dwek, R. (2001) Glycosylation and the immune system. Science 291, 2370–2376.

    Article  CAS  PubMed  Google Scholar 

  20. Kornfeld, R. and Kornfeld, S. (1985) Assembly of asparagine-linked oligosaccharides. Annu. Rev. Biochem. 54, 631–664.

    Article  CAS  PubMed  Google Scholar 

  21. Carraway, K. and Hull, S. (1991) Cell surface mucin-type glycoproteins and mucin-like domains. Glycobiology 1, 131–138.

    Article  CAS  PubMed  Google Scholar 

  22. Hanisch, F.-G. and Muller, S. (2000) Muc1: the polymorphic apperance of human mucin. Glycobiology 10, 439–449.

    Article  CAS  PubMed  Google Scholar 

  23. Kjellen, L. and Lindahl, U. (1991) Proteoglycans: structure and interactions. Annu. Rev. Biochem. 60, 443–475.

    Article  CAS  PubMed  Google Scholar 

  24. Zachara, N. and Hart, G. (2002) The emerging significance of O-GlcNAc in cellular regulation. Chem. Rev. 203, 431–438.

    Article  Google Scholar 

  25. Kivirikko, K. and Myllyla, R. (1982) Post-translational enzymes in the biosynthesis of collagen: Intracellular enzymes. Methods Enzymol. 82, 245–304.

    Article  CAS  PubMed  Google Scholar 

  26. Vliegenthart, J. and Casset, F. (1998) Novel forms of protein glycosylation. Curr. Opin. Struct. Biol. 8, 565–571.

    Article  CAS  PubMed  Google Scholar 

  27. Lote, C. and Weiss, J. (1971) Identification of digalactosylcysteine in a glycopeptide isolated from urine by a new preparative technique. FEBS Lett. 16, 81–85.

    Article  CAS  PubMed  Google Scholar 

  28. Gonzalez de Peredo, A., Klein, D., Macek, B., Hess, D., Peter-Katalinic, J., and Hofsteenge, J. (2002) C-mannosylation and O-fucosylation of thrombospodin type I repeats. Mol. Cell Proteomics 1, 11–18.

    Article  CAS  PubMed  Google Scholar 

  29. Haynes, P.A. (1998) Phosphoglycosylation: a new stuctural class of glycosylation? Glycobiology 8, 1–5.

    Article  CAS  PubMed  Google Scholar 

  30. Davis, B. (2002) Synthesis of glycoproteins. Chem. Rev. 102, 579–601.

    Article  CAS  PubMed  Google Scholar 

  31. Kunz, H. (1987) Synthesis of glycopeptides, partial structures of biological recognition components. Agnew. Chem. Int. Ed. 26, 294–308.

    Article  Google Scholar 

  32. Meldal, M., Glycopeptide synthesis, in Neoglycoconjugates: Preparation and Applications (Lee, Y. and Lee, R.T., eds.). Academic Press, San Diego, 1994, pp. 145–198.

    Google Scholar 

  33. Kihlberg, J. and Elofsson, M. (1997) Solid-phase synthesis of glycopeptides: immunological studies with T cell simulating glycopeptides. Current Med. Chem. 4, 79–110.

    Google Scholar 

  34. Herzner, H., Reipen, T., Schultz, M., and Kunz, H. (2000) Synthesis of glycopeptides containing carbohydrates and peptide recognition motifs. Chem. Rev. 100, 4495–4537.

    Article  CAS  PubMed  Google Scholar 

  35. Koeller, K.M. and Wong, C.H. (2001) Enzymes for chemical synthesis. Nature 409, 232–239.

    Article  CAS  PubMed  Google Scholar 

  36. Flitsch, S.L., Macmillan, D., Bill, R.M., Sage, K.A., and Fern, D. (2000) Selective in vitro glycosylation of recombinant proteins: semi-synthesis of novel homogeneous glycoforms of human erythropoietin. Chem. Biol. 4, 619–625.

    CAS  Google Scholar 

  37. Palcic, M. (1999) Biocatalytic synthesis of oligosaccharides. Curr. Opin. Biotechnol. 10, 616–624.

    Article  CAS  PubMed  Google Scholar 

  38. Wu, B., Chen, J., Warren, D., Chen, G., Hua, Z., and Danishefsky, S. (2006) Building complex glycopeptides: Development of cysteine-free native chemical ligation protocol. Agnew. Chem. Int. Ed. 45, 4116–4125.

    Article  CAS  Google Scholar 

  39. Brik, A., Yang, Y.-Y., Ficht, S., and Wong, C.H. (2006) Sugar-assisted glycopeptide ligation. J. Am. Chem. Soc. 128, 5626–5627.

    Article  CAS  PubMed  Google Scholar 

  40. Cohen-Anisfeld, S. and Lansbury, P., Jr. (1993) A practical, convergent method for glycopeptide synthesis. J. Am. Chem. Soc. 115, 10531–10537.

    Article  CAS  Google Scholar 

  41. Vetter, D., Tumelty, D., Singh, S., and Gallop, M. (1995) A versatile solid-phase synthesis of N-linked glycopeptides. Angew. Chem. Int. Ed. 34, 60–62.

    Article  CAS  Google Scholar 

  42. Offer, J., Quibell, M., and Johnson, T. (1996) On-resin solid-phase synthesis of asparagine-N-linked glycopeptides: use of N-(2-acetoxy-4-methoxybenzyl) (AcHmb) aspartyl amide-bond protection to prevent unwanted aspartimide formation. J. Am. Chem. Soc. Perkin Trans I., 175–182.

    Google Scholar 

  43. Bodanszky, M. and Natarajan, S. (1975) Side reactions in peptide-synthesis. 2. Formation of succinimide derivatives from aspartyl residues. J. Org. Chem. 40, 2495–2499.

    Article  CAS  PubMed  Google Scholar 

  44. Hollosi, M., Kollat, E., Laczko, I., Medzihradsky, K., Thurin, J., and Otvos, L.J. (1991) Solid-phase synthesis of glycopeptides: glycosylation of resin-bound serine-peptides by 3,4,6-tri-O-acetyl-D-glucose-oxazoline. Tetrahedron Lett. 32, 1531–1534.

    Article  CAS  Google Scholar 

  45. Andrews, D. and Seale, P. (1993) Solid-phase synthesis of O-mannosylated peptides: two strategies compared. Int. J. Pept. Protein Res. 42, 165–170.

    Article  CAS  PubMed  Google Scholar 

  46. Paulsen, H., Schleyer, A., Mathieux, N., Meldal, M., and Bock, K. (1997) New solid-phase oligosaccharide synthesis on glycopeptides bound to a solid phase. J. Am. Chem. Soc. Perkin Trans I., 281–293.

    Google Scholar 

  47. Mort, A. and Lamport, D.T. (1977) Anhydrous hydrogen fluoride deglycosylates glycoproteins. Anal. Biochem. 82, 289–309.

    Article  CAS  PubMed  Google Scholar 

  48. Wakabayashi, K. and Pigman, W. (1974) Synthesis of some glycodipeptides containing hydroxyamino acids, and their stabilities to acids and bases. Carbohydr. Res. 35, 3–14.

    Article  CAS  PubMed  Google Scholar 

  49. Greene, T.W. and Wuts, P., Protective Groups in Organic Synthesis. John Wiley, New York, 1991.

    Google Scholar 

  50. Mogemark, M. and Kihlberg, J. (2006) Glycopeptides. Org. Chem. Sugars 755–801.

    Google Scholar 

  51. Arsequell, G. and Valencia, G. (1997) O-Glycosyl α-amino acids as building blocks for glycopeptide synthesis. Tetrahedron: Asymmetry 8, 2839–2876.

    Article  CAS  Google Scholar 

  52. Lindhorst, T.K., Essentials of Carbohydrate Chemistry and Biochemistry. Wiley-VCH Verlag, Weinheim, 2003, pp. 39–78.

    Google Scholar 

  53. Schmidt, R. (1986) New methods for the synthesis of glycosides and oligosaccharides - Are there alternatives to the Koenigs-Knorr method? Angew. Chem. Int. Ed. 25, 212–235.

    Article  Google Scholar 

  54. Wolfrom, M.L. and Thompson, A. (1963) Acetylation. Meth. Carbohydr. Chem., 211–215.

    Google Scholar 

  55. Reimer, K., Meldal, M., Kusumoto, S., Fukase, K., and Bock, K. (1993) Small-scale solid-phase O-glycopeptide synthesis of linear and cyclized hexapeptides from blood-clotting factor IX containing O-(α-D-Xyl-(1–3)-α-D-Xyl-(1–3)-β-D-Glc)-L-Ser. J. Am. Chem. Soc. Perkin Trans I., 925–932.

    Google Scholar 

  56. Holm, B., Broddefalk, J., Flodell, S., Wellner, E., and Kihlberg, J. (2000) An improbed synthesis of a galactosylated hydroxylysine building block and its use in solid-phase glycopeptide synthesis. Tetrahedron Lett. 56, 1579–1586.

    CAS  Google Scholar 

  57. Cudic, M., Lauer-Fields, J.L., and Fields, G.B. (2005) Improved synthesis of 5-hydroxylysine (Hyl) derivatives. J. Pept. Res. 65, 272–283.

    Article  CAS  PubMed  Google Scholar 

  58. Vegad, H., Gray, C., Somers, P., and Dutta, A. (1997) Glycosylation of Fmoc amino acids: preparation of mono- and di-glycosylated derivatives and their incorporation into Arg-Gly-Asp(RGD)-containing glycopeptides. J. Am. Chem. Soc. Perkin Trans I., 1429–1441.

    Google Scholar 

  59. Jansson, A., Meldal, M., and Bock, K. (1992) Solid-phase synthesis and characterization of O-dimannosylated heptadecapeptide analogues of human insulin-like growth factor 1 (IGF-1). J. Am. Chem. Soc. Perkin Trans I., 1699–1707.

    Google Scholar 

  60. Jones, J.K.N., Perry, M.B., Shelton, B., and Walton, D.T. (1961) Carbohydrate-protein linkage in glycoproteins. I. Syntheses of some model substituted amides and a (2-amino-2-deoxy-D-glucosyl)-L-serine. Can. J. Chem. 39, 1005–1016.

    Article  CAS  Google Scholar 

  61. Vargas-Berenguel, A., Meldal, M., Paulsen, H., and Bock, K. (1994) Convenient synthesis of O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-serine and -threonine building blocks for solid-phase glycopeptide assembly. J. Am. Chem. Soc. Perkin Trans I., 2615–2619.

    Google Scholar 

  62. Salvador, L., Elofsson, M., and Kihlberg, J. (1995) Preparation of building blocks for glycopeptide synthesis by glycosylation of Fmoc amino acids having unprotected carboxyl groups. Tetrahedron Lett. 51, 5643–5656.

    CAS  Google Scholar 

  63. Schultz, M. and Kunz, H. (1992) Enzymatic glycosylation of O-glycopeptides. Tetrahedron Lett. 33, 5319–5322.

    Article  CAS  Google Scholar 

  64. Meinjohanns, E., Meldal, M., and Bock, K. (1995) Efficient synthesis of O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-Ser/Thr building blocks for SPPS of O-GlcNAc glycopeptides. Tetrahedron Lett. 36, 9205–9208.

    Article  CAS  Google Scholar 

  65. Saha, U. and Schmidt, R. (1997) Efficient synthesis of O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-serine and -threonine building blocks for glycopeptide formation. J. Am. Chem. Soc. Perkin Trans I., 1855–1860.

    Google Scholar 

  66. Meinjohanns, E., Vargas-Berenguel, A., Meldal, M., Paulsen, H., and Bock, K. (1995) Comparision of N-Dts and N-Aloc in the solid-phase synthesis of O-GlcNAc glycopeptide fragments of RNA-polymerase II and mammalian neurofilaments. J. Am. Chem. Soc. Perkin Trans I., 2165–2175.

    Google Scholar 

  67. Jensen, K., Hansen, P., Venugopal, D., and Barany, G. (1996) Synthesis of 2-acetamido-2-deoxy-β-D-glucopyranose O-glycopeptides from N-dithiasuccinoyl -protected derivatives. J. Am. Chem. Soc. 118, 3148–3155.

    Article  CAS  Google Scholar 

  68. Norberg, T., Luning, B., and Tejbrant, J. (1994) Solid-phase synthesis of O-glycopeptides. Methods Enymol. 247, 87–106.

    Article  CAS  Google Scholar 

  69. Kuduk, S., Schwarz, J., Chen, X.-T., et al. (1998) Synthetic and immunological studies on clustered modes of mucin-related Tn and TF O-linked antigens: The preparation of a glycopeptide-based vaccine for clinical trials against prostate cancer. J. Am. Chem. Soc. 120, 12474–12485.

    Article  CAS  Google Scholar 

  70. Cudic, M., Ertl, H.C.J., and Otvos, L.J. (2002) Synthesis, conformation, and T-helper cell stimulation of an O-linked glycopeptide epitope containing extended carbohydrate side-chains. Bioorg. Med. Chem. 10, 3859–3870.

    Article  CAS  PubMed  Google Scholar 

  71. Vuljanic, T., Bergquist, K., Clausen, H., Roy, S., and Kihlberg, J. (1996) Piperidine is preferred to morpholine for Fmoc cleavage in solid phase glycopeptide synthesis as exemplified by preparation of glycopeptides related to HIV gp120 and mucins. Tetrahedron Lett. 52, 7983–8000.

    CAS  Google Scholar 

  72. Kunz, H. and Birnbach, S. (1986) Synthesis of O-glycopeptides of the tumor-associated Tn- and T-antigen type and their binding to bovine serum albumin. Agnew. Chem Int Ed. 98(4), 360–362.

    Google Scholar 

  73. Paulsen, H. and Adermann, K. (1989) Synthesis of O-glycopeptides of the N-terminus of interleukin-2. Liebigs Ann. Chem., 751–769.

    Google Scholar 

  74. Liebe, B. and Kunz, H. (1997) Solid-phase synthesis of a tumor-associated sialyl-TN antigen glycopeptide with a partial sequence of the “tandem repeat” of the MUC-1 mucin. Angew. Chem. Int. Ed. 36, 618–621.

    Article  CAS  Google Scholar 

  75. Kragol, G. and Otvos, L.J. (2001) Orthogonal solid-phase synthesis of tetramannosylated peptide constructs carrying three independent branched epitopes. Tetrahedron 57, 957–966.

    Article  CAS  Google Scholar 

  76. Grundler, G. and Schmidt, R. (1984) Glycosyl imidates, 13. Application of the trichloroacetimidate procedure to 2-azidoglucose and 2-azidogalactose derivatives. Liebigs Ann. Chem., (11), 1826–1847.

    Article  Google Scholar 

  77. Kinzy, W. and Schmidt, R. (1987) Glycosylimidates. Part 24. Application of the tricholoroacetimidate method to the synthesis of glycopeptides of the mucin type containing a β-D-Galp-(1–3)-D-GalpNAc unit. Carbohydr. Res. 164, 265–276.

    Article  CAS  PubMed  Google Scholar 

  78. Kinzy, W. and Schmidt, R. (1989) Glycosylimidates. Part 39. Synthesis of glycopeptides of the mucin type containg a β-D-GlcpNAc-(1–3)-D-GalpNAc unit. Carbohydr. Res. 193, 33–47.

    Article  CAS  Google Scholar 

  79. Yule, J.E., Wong, T.C., Gandhi, S.S., Qiu, D., Riopel, M.A., and Koganty, R.R. (1995) Steric control of N-acetylgalactosamine in glycosidic bond formation. Tetrahedron Lett. 36, 6839–6842.

    CAS  Google Scholar 

  80. Qiu, D., Gandhi, S.S., and Koganty, R.R. (1996) β-Gal(1–3)GalNAc block donor for the synthesis of TF and α-sialyl(2–6)TF as glycopeptide building blocks. Tetrahedron Lett. 37, 595–598.

    Article  CAS  Google Scholar 

  81. Schmidt, R. and Kinzy, W. (1994) Anomeric-oxygen activation for glycoside synthesis: the trichloroacetimidate method. Adv. Carbohydr. Chem. Biochem. 50, 21.

    Google Scholar 

  82. Norberg, T. (1996) Glycosylation properties and reactivity of thioglycosides, sulfoxides, and other S-glycosides: current scope and future prospects. Mod. Meth. Carbohydr. Synth. 82–106.

    Google Scholar 

  83. Paulsen, H., Rauwald, W., and Weichert, U. (1988) Building units of oligosaccharides. LXXXVI. Glycosidation of oligosaccharide thioglycosides to O-glycoprotein segments. Liebigs Ann. Chem. 1, 75–86.

    Article  Google Scholar 

  84. Braun, P., Waldmann, H., and Kunz, H. (1992) Selective enzymatic removal of protecting functions: heptyl esters as carboxy protecting groups in glycopeptide synthesis. Synlett 1, 39–40.

    Article  Google Scholar 

  85. Paulsen, H. and Brenken, M. (1988) Synthesis of L-alanyl-3-O-(β-D-xylopyranosyl)-L-seryl-glycyl-L-isoleucine. Direct glycosidation of peptides. Liebigs Ann. Chem. 7, 649–654.

    Article  Google Scholar 

  86. Kunz, H., Waldman, H., and Marz, J. (1989) Synthesis of partial structures of N-glycopeptides representing the linkage regions of the transmembrane neuraminidase of an influenza virus and of factor B of the human complement system. Liebigs Ann. Chem. (1), 45–49.

    Article  Google Scholar 

  87. Thiem, J. and Wiemann, T. (1990) Combined chemoenzymic structure of N-glycoprotein synthons. Angew. Chem. Int. Ed. 29, 80.

    Article  Google Scholar 

  88. Tropper, F., Andersson, F., Braun, S., and Roy, R. (1992) Phase transfer catalysis as a general and stereoselective entry into glycosyl azides from glycosyl halides. Synthesis 618–620.

    Google Scholar 

  89. Marks, G. and Neuberger, A. (1961) Synthetic studies relating to the carbohydrate-protein linkage in egg albumin. J. Am. Chem. Soc. 958, 4872–4879.

    Google Scholar 

  90. Nakabayashi, S., Warren, C.D., and Jeanloz, R.W. (1988) The preparation of a partially protected heptasaccharide-asparagine intermediate for glycopeptide synthesis. Carbohydr. Res. 174, 279–289.

    Article  CAS  PubMed  Google Scholar 

  91. McDonald, F.E. and Danishefsky, S. (1992) A stereoselective route from glycals to asparagine-linked N-protected glycopeptides. J. Org. Chem. 57, 7001–7002.

    Article  CAS  Google Scholar 

  92. von dem Bruch, K. and Kunz, H. (1994) Synthesis of N-glycopeptide clusters with Lewis antigen side chains and their binding of carrier proteins. J. Org. Chem. 33, 101–103.

    Google Scholar 

  93. Saha, U.K. and Roy, R. (1995) First synthesis of N-glycopeptoid as new glycopeptidomimetics. Tetrahedron Lett. 36, 3635–3638.

    Article  CAS  Google Scholar 

  94. Unverzagt, C. (1996) Chemoenzymatic synthesis of a sialylated undecasaccharide-asparagine conjugate. Angew. Chem. Int. Ed. 35, 2350–2353.

    Article  CAS  Google Scholar 

  95. Kunz, H. and Unverzagt, C. (1988) Protecting-group-dependant stability of intersaccharide bonds-Synthesis of a fucosyl-chitobiose glycopeptide. Angew. Chem. Int. Ed. 27, 1697–1699.

    Article  Google Scholar 

  96. Likhosherstov, L.M., Novikova, O.S., Derevitskaja, V.A., and Kochetkov, N.K. (1986) A new simple synthesis of amino sugar β-D-glycosylamines. Carbohydr. Res. 146, c1–c5.

    Article  CAS  Google Scholar 

  97. Urge, L., Kollat, E., Hollosi, M., et al. (1991) Solid-phase synthesis of glycopeptides: synthesis of N-α-fluorenylmethoxycarbonyl L-asparagine N-β-glycosides. Tetrahedron Lett. 32, 3445–3448.

    Article  CAS  Google Scholar 

  98. Clark, R.S., Banerjee, S., and Coward, J.K. (1990) Yeast oligosaccharyltransferase: glycosylation of peptide substrates and chemical characterization of the glycopeptide product. J. Org. Chem. 55, 6275–6285.

    Article  CAS  Google Scholar 

  99. Anisfeld, S. and Lansbury, P., Jr. (1990) A convergent approach to the chemical synthesis of asparagine-linked glycopeptides. J. Org. Chem. 55, 5560–5562.

    Article  CAS  Google Scholar 

  100. Schultz, M. and Kunz, H. (1993) Synthetic O-glycopeptides as model substrates for glycosyltransferases. Tetrahedron: Asymmetry 4, 1205–1220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cudic, M., Burstein, G.D. (2008). Preparation of Glycosylated Amino Acids Suitable for Fmoc Solid-Phase Assembly. In: Otvos, L. (eds) Peptide-Based Drug Design. Methods In Molecular Biology™, vol 494. Humana Press. https://doi.org/10.1007/978-1-59745-419-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-419-3_11

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-990-1

  • Online ISBN: 978-1-59745-419-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics