Skip to main content
Book cover

Leukemia pp 179–206Cite as

Application of SNP Genotype Arrays to Determine Somatic Changes in Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 538))

Summary

Genetic abnormalities in leukaemia range from single gene defects to chromosomal translocations, inversions, losses and gains. While conventional technologies can detect macroscopic abnormalities, finding smaller regions remained a challenge until the recent introduction of high-resolution genomic platforms. Microarrays based on single nucleotide polymorphisms is one such technology. It has made possible genome-wide allelic association studies of predisposition to common clinical problems. This approach is also being used to identify somatic changes in cancer, such as loss, gain and copy-neutral loss of heterozygosity (CN-LOH), which are below the level of detection by conventional systems. Such arrays have been used to identify key genes involved in paediatric acute lymphoblastic leukaemia. We have used these arrays to identify regions of CN-LOH on a genome-wide scale in a large series of acute myeloid leukaemia samples, which so far has not been possible through any other technology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fan JB, Chee MS, Gunderson KL. (2006) Highly parallel genomic assays. Nat Rev Genet. 7, 632–44.

    Article  PubMed  CAS  Google Scholar 

  2. Syvanen AC. (2001) Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2, 930–42.

    Article  PubMed  CAS  Google Scholar 

  3. Syvanen AC. (2005) Toward genome-wide SNP genotyping. Nat Genet. 37 Suppl, S5–10.

    Google Scholar 

  4. Wellcome Trust Case Control Consortium. (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447, 661–78.

    Article  Google Scholar 

  5. Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG, et al. (2007) Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 447, 1087–93.

    Article  PubMed  CAS  Google Scholar 

  6. Kemp Z, Carvajal-Carmona L, Spain S, Barclay E, Gorman M, Martin L, et al. (2006) Evidence for a colorectal cancer susceptibility locus on chromosome 3q21-q24 from a high-density SNP genome-wide linkage scan. Hum Mol Genet. 15, 2903–10.

    Article  PubMed  CAS  Google Scholar 

  7. Sellick GS, Longman C, Brockington M, Mahjneh I, Sagi L, Bushby K, et al. (2005) Localisation of merosin-positive congenital muscular dystrophy to chromosome 4p16.3. Hum Genet. 117, 207–12.

    Article  PubMed  CAS  Google Scholar 

  8. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S, et al. (2007) A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet. 39, 984–8.

    Article  PubMed  CAS  Google Scholar 

  9. Jacobs S, Thompson ER, Nannya Y, Yamamoto G, Pillai R, Ogawa S, et al. (2007) Genome-wide, high-resolution detection of copy number, loss of heterozygosity, and genotypes from formalin-fixed, paraffin-embedded tumor tissue using microarrays. Cancer Res. 67, 2544–51.

    Article  PubMed  CAS  Google Scholar 

  10. Lips EH, Dierssen JW, van Eijk R, Oosting J, Eilers PH, Tollenaar RA, et al. (2005) Reliable high-throughput genotyping and loss-of-heterozygosity detection in formalin-fixed, paraffin-embedded tumors using single nucleotide polymorphism arrays. Cancer Res. 65, 10188–91.

    Article  PubMed  CAS  Google Scholar 

  11. Oosting J, Lips EH, van Eijk R, Eilers PH, Szuhai K, Wijmenga C, et al. (2007) High-resolution copy number analysis of paraffin-embedded archival tissue using SNP BeadArrays. Genome Res. 17, 368–76.

    Article  PubMed  CAS  Google Scholar 

  12. Berthier-Schaad Y, Kao WH, Coresh J, Zhang L, Ingersoll RG, Stephens R, et al. (2007) Reliability of high-throughput genotyping of whole genome amplified DNA in SNP genotyping studies. Electrophoresis. 28, 2812–7.

    Article  PubMed  CAS  Google Scholar 

  13. Zhou X, Temam S, Chen Z, Ye H, Mao L, Wong DT. (2005) Allelic imbalance analysis of oral tongue squamous cell carcinoma by high-density single nucleotide polymorphism arrays using whole-genome amplified DNA. Hum Genet. 118, 504–7.

    Article  PubMed  CAS  Google Scholar 

  14. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW, Wu B, et al. (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res. 16, 383–93.

    Article  PubMed  CAS  Google Scholar 

  15. Yuan E, Haghighi F, White S, Costa R, McMinn J, Chun K, et al. (2006) A single nucleotide polymorphism chip-based method for combined genetic and epigenetic profiling: validation in decitabine therapy and tumor/normal comparisons. Cancer Res. 66, 3443–51.

    Article  PubMed  CAS  Google Scholar 

  16. Milani L, Gupta M, Andersen M, Dhar S, Fryknas M, Isaksson A, et al. (2007) Allelic imbalance in gene expression as a guide to cis-acting regulatory single nucleotide polymorphisms in cancer cells. Nucleic Acids Res. 35, e34.

    Article  PubMed  Google Scholar 

  17. Pant PV, Tao H, Beilharz EJ, Ballinger DG, Cox DR, Frazer KA. (2006) Analysis of allelic differential expression in human white blood cells. Genome Res. 16, 331–9.

    Article  PubMed  CAS  Google Scholar 

  18. Matsuzaki H, Loi H, Dong S, Tsai YY, Fang J, Law J, et al. (2004) Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Res. 14, 414–25.

    Article  PubMed  CAS  Google Scholar 

  19. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL. (2006) Whole-genome genotyping with the single-base extension assay. Nat Methods. 3, 31–3.

    Article  PubMed  CAS  Google Scholar 

  20. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, et al. (2007) Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature. 446, 758–64.

    Article  PubMed  CAS  Google Scholar 

  21. Rivera MN, Kim WJ, Wells J, Driscoll DR, Brannigan BW, Han M, et al. (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 315, 642–5.

    Article  PubMed  CAS  Google Scholar 

  22. Liu TX, Becker MW, Jelinek J, Wu WS, Deng M, Mikhalkevich N, et al. (2007) Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med. 13, 78–83.

    Article  PubMed  Google Scholar 

  23. Purdie KJ, Lambert SR, Teh MT, Chaplin T, Molloy G, Raghavan M, et al. (2007) Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes Chromosomes Cancer. 46, 661–9.

    Article  PubMed  CAS  Google Scholar 

  24. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C, et al. (2005) A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 434, 1144–8.

    Article  PubMed  CAS  Google Scholar 

  25. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ, et al. (2005) Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res. 65, 375–8.

    PubMed  CAS  Google Scholar 

  26. Bignell GR, Huang J, Greshock J, Watt S, Butler A, West S, et al. (2004) High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Res. 14, 287–95.

    Article  PubMed  CAS  Google Scholar 

  27. LaFramboise T, Weir BA, Zhao X, Beroukhim R, Li C, Harrington D, et al. (2005) Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput Biol. 1, e65.

    Article  PubMed  Google Scholar 

  28. Beroukhim R, Lin M, Park Y, Hao K, Zhao X, Garraway LA, et al. (2006) Inferring loss-of-heterozygosity from unpaired tumors using high-density oligonucleotide SNP arrays. PLoS Comput Biol. 2, e41.

    Article  PubMed  Google Scholar 

  29. Lindblad-Toh K, Tanenbaum DM, Daly MJ, Winchester E, Lui WO, Villapakkam A, et al. (2000) Loss-of-heterozygosity analysis of small-cell lung carcinomas using single-nucleotide polymorphism arrays. Nat Biotechnol. 18, 1001–5.

    Article  PubMed  CAS  Google Scholar 

  30. Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, et al. (2006) High-resolution genomic profiling of chromosomal aberrations using Infinium whole-genome genotyping. Genome Res. 16, 1136–48.

    Article  PubMed  CAS  Google Scholar 

  31. Zhao X, Li C, Paez JG, Chin K, Janne PA, Chen TH, et al. (2004) An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Res. 64, 3060–71.

    Article  PubMed  CAS  Google Scholar 

  32. Yamamoto G, Nannya Y, Kato M, Sanada M, Levine RL, Kawamata N, et al. (2007) Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. Am J Hum Genet. 81, 114–26.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this chapter was supported by the grants from the Leukaemia Research Fund (05054 to Bryan D. Young) and Cancer Research UK (C6277/A6789 to Bryan D. Young).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan D. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gupta, M., Young, B. (2009). Application of SNP Genotype Arrays to Determine Somatic Changes in Cancer. In: Eric So, C.W. (eds) Leukemia. Methods in Molecular Biology™, vol 538. Humana Press. https://doi.org/10.1007/978-1-59745-418-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-418-6_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-989-5

  • Online ISBN: 978-1-59745-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics