Skip to main content

Array-Based Comparative Genomic Hybridization as a Tool for Analyzing the Leukemia Genome

  • Protocol
  • First Online:
Leukemia

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 538))

Summary

Comparative genomic hybridization (CGH) is arguably the most significant technical development in the molecular cytogenetics era, and has contributed considerably to our further understanding of the cancer genome. In essence, DNA from a cancer specimen (test DNA) labeled with the fluorescence reporter molecule (or fluorochrome) is hybridized to a target genome in the presence of a differentially labeled control DNA (reference DNA). The two DNA populations compete for hybridization sites on normal metaphase chromosomes, so that the resulting fluorescence ratio is a reflection of the copy number change in the test sample. The copy number changes are mapped to their position on the chromosome template. Over recent years, the chromosomal template has been largely superseded by microarray formats (aCGH), in which changes in copy number can be mapped to the genome sequence at a high resolution. This advance allows the genome to be studied at an unbridled resolution and at a high-throughput, whilst posing several technical, statistical and interpretive challenges. It is the aim of this chapter to introduce the fundamental concepts of aCGH and to provide an overview of the steps involved in a successful aCGH processing. The materials required for BAC and oligonucleotide aCGH are included, with detailed methods and a range of refinements to improve the success rate and quality of aCGH data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kallioniemi, A., et al. Comparative genomic hybridisation for molecular genetic analysis of solid tumours. Science 258(5083),818–821 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. Solinas-Toldo, S., et al. Matrix-based comparative genomic hybridization: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20, 399–407 (1997).

    Article  PubMed  CAS  Google Scholar 

  3. Pinkel, D., et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20, 207–211 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. Snijders, A.M., et al. Assembly of microarrays for genome-wide measurement of DNA copy number. Nat Genet 29, 263–264 (2001).

    Article  PubMed  CAS  Google Scholar 

  5. Fiegler, H., et al. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 37, 223 (2003).

    Article  CAS  Google Scholar 

  6. Smirnov, D.A., Burdick, J.T., Morley, M. & Cheung, V.G. Method for manufacturing whole-genome microarrays by rolling circle amplification. Genes Chromosomes Cancer 40, 72–77 (2004).

    Article  PubMed  CAS  Google Scholar 

  7. Ishkanian, A.S., et al. A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36, 299–303 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Krzywinski, M., et al. A set of BAC clones spanning the human genome. Nucleic Acids Res 32, 3651–3660 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Pollack, J.R., et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat Genet 23, 41–46 (1999).

    Article  PubMed  CAS  Google Scholar 

  10. Dhami, P., et al. Exon array CGH: detection of copy-number changes at the resolution of individual exons in the human genome. Am J Hum Genet 76, 750–762 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Brennan, C., et al. High-resolution global profiling of genomic alterations with long oligonucleotide microarray. Cancer Res 64, 4744–4748 (2004).

    Article  PubMed  CAS  Google Scholar 

  12. Callagy, G., et al. Identification and validation of prognostic markers in breast cancer with the complementary use of array-CGH and tissue microarrays. J Pathol 205, 388–396 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Barrett, M.T., et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc Natl Acad Sci USA 101, 17765–17770 (2004).

    Article  PubMed  CAS  Google Scholar 

  14. Schouten, J.P., et al. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30, e57 (2002).

    Article  PubMed  Google Scholar 

  15. Daser, A., et al. Interrogation of genomes by molecular copy-number counting (MCC). Nat Methods 3, 447–453 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Strefford, J.C., et al. Genome complexity in acute lymphoblastic leukaemia is revealed by array-based comparative genomic hybridization. Oncogene 26, 4306–4318 (2007).

    Article  PubMed  CAS  Google Scholar 

  17. Paulsson, K., et al. Identification of cryptic aberrations and characterization of translocation breakpoints using array CGH in high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia 20, 2002–2007 (2006).

    Article  PubMed  CAS  Google Scholar 

  18. Moorman, A.V., et al. Prognosis of children with acute lymphoblastic leukaemia (ALL) and intrachromosomal amplification of chromosome 21 (iAMP21). Blood 109, 2327–2330 (2007).

    Article  PubMed  CAS  Google Scholar 

  19. Strefford, J.C., et al. Complex genomic alterations and gene expression in acute lymphoblastic leukemia with intrachromosomal amplification of chromosome 21. Proc Natl Acad Sci USA 103, 8167–8172 (2006).

    Article  PubMed  CAS  Google Scholar 

  20. van Vlierberghe, P., et al. A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia 20, 1245–1253 (2006).

    Article  PubMed  CAS  Google Scholar 

  21. van Vlierberghe, P., et al. The cryptic chromosomal deletion, del(11)(p12p13), as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108, 3520–3529 (2006).

    Article  PubMed  CAS  Google Scholar 

  22. Barber, K.E., et al. Amplification of the ABL gene in T-cell acute lymphoblastic leukemia. Leukemia 18, 1153–1156 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. Graux, C., et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 36, 1084–1089 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. Jong, K., Marchiori, E., Meijer, G., Vaart, A.V. & Ylstra, B. Breakpoint identification and smoothing of array comparative genomic hybridization data. Bioinformatics 20, 3636–3637 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Hupe, P., Stransky, N., Thiery, J.P., Radvanyi, F. & Barillot, E. Analysis of array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics 20, 3413–3422 (2004).

    Article  PubMed  CAS  Google Scholar 

  26. Eilers, P.H. & de Menezes, R.X. Quantile smoothing of array CGH data. Bioinformatics 21, 1146–1153 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Professor Christine Harrison for critical reading of the manuscript. This work was funded by Leukaemia Research, United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon C. Strefford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Strefford, J., Parker, H. (2009). Array-Based Comparative Genomic Hybridization as a Tool for Analyzing the Leukemia Genome. In: Eric So, C.W. (eds) Leukemia. Methods in Molecular Biology™, vol 538. Humana Press. https://doi.org/10.1007/978-1-59745-418-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-418-6_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-989-5

  • Online ISBN: 978-1-59745-418-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics