Advertisement

Transient Expression of Antibodies in Plants Using Syringe Agroinfiltration

  • Marc-André D'Aoust
  • Pierre-Olivier Lavoie
  • Julie Belles-Isles
  • Nicole Bechtold
  • Michèle Martel
  • Louis-P. Vézina
Part of the Methods in Molecular Biology™ book series (MIMB, volume 483)

Summary

The improvements in agroinfiltration methods for plant-based transient expression now allow the production of significant amounts of recombinant proteins in a matter of days. While vacuum-based agroinfiltration has been brought to large scale to meet the cost, speed and surge capacity requirements for vaccine and therapeutic production, the more accessible and affordable syringe agroinfiltration procedure still represents a fast and high-yielding approach to recombinant protein production at lab scale. The procedure exemplified here has proven its reproducibility and high-yield capacity for the production of proteins with varying levels of complexity, including monoclonal antibodies.

Key words

Agroinfiltration Nicotiana benthamiana Monoclonal antibody Transient expression 

References

  1. 1.
    Yusibov, V., Rabindran, S., Commandeur, U., Twyman, R.M., and Fischer, R. (2006) The potential of plant virus vectors for vaccine production.Drugs R&D 7, 203–217.CrossRefGoogle Scholar
  2. 2.
    Verch, T., Yusibov, V., and Koprowski, H. (1998) Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector.J. Immunol. Methods 220, 69–75.CrossRefPubMedGoogle Scholar
  3. 3.
    Alamillo, J.M., Monger, W., Sola, I., García, B., Perrin, Y., Bestagno, M., Burrone, O.R., Sabella, P., Plana-Durán, J., Enjuanes, L., Lomonossoff, G., and García, J.A. (2006) Use of virus vector for the expression in plants of active full length and single-chain anti-coronavirus antibodies.Biotechnol. J. 1, 1103–1111.CrossRefPubMedGoogle Scholar
  4. 4.
    Kapila, J., De Rycke, R., Van Montagu, M., and Angenon, G. (1997) An Agrobacterium-mediated transient gene expression system for intact leaves.Plant Sci. 122, 101–108.CrossRefGoogle Scholar
  5. 5.
    Vaquero, C., Sack, M., Chandler, J., Drossard, J., Schuster, F., Monecke, M., Schillberg, S., and Fischer, R. (1999) Transient expression of a tumor-specific single chain fragment and a chimeric antibody in tobacco leaves.Proc. Natl. Acad. Sci. USA 96, 11128–11133.CrossRefPubMedGoogle Scholar
  6. 6.
    Kathuria, S.R., Nath, R., Pal, R., Singh, O., Fischer, R., Lohiya, N.K., and Talwar, G.P. (2002). Functional recombinant antibodies against human chorionic gonadotropin expressed in plants.Curr. Sci.82, 1452–1456.Google Scholar
  7. 7.
    Rodriguez, M., Ramírez, N.I., Ayala, M., Freyre, F., Pérez, L., Triguero, A., Mateo, C., Selman-Houssien, G., Gavilondo, J.V., and Pujol, M. (2005) Transient expression in tobacco leaves of an aglycosylated recombinant antibody against the epidermal growth factor receptor.Biotechnol. Bioeng.89, 188–194.CrossRefPubMedGoogle Scholar
  8. 8.
    Sriraman, R., Bardor, M., Sack, M., Vaquero, C., Faye, L., Fischer, R., Finnern, R., and Lerouge, P. (2004) Recombinant anti-hCG antibodies retained in the endoplasmic reticulum of transformed plants lack core-xylose and core- a (1–3)-fucose residues.Plant Biotechnol. J. 2, 279–287.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, L., and Lomonossoff, G.P. (2002) Agroinfection as a rapid method for propagating Cowpea mosaic virus-based constructs.J. Virol. Methods 105, 343–348.CrossRefPubMedGoogle Scholar
  10. 10.
    St Laurent, M., Marcil, A., Verrette, S., and Lemieux, R. (1993) Functional cooperation among human IgG-specific murine monoclonal antibodies for the detection of weak blood group antibodies in routine agglutination tests.Vox. Sang.64, 99–105.PubMedGoogle Scholar
  11. 11.
    Fang, R.X., Nagy, F., Sivasubramaniam, S., and Chua, N.H. (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants.Plant Cell 1, 141–150.CrossRefPubMedGoogle Scholar
  12. 12.
    Carrington, J.C., and Freed, D.D. (1990) Cap-independent enhancement of translation by plant potyvirus 5' non-translated region.J. Virol. 64, 1590–1597.PubMedGoogle Scholar
  13. 13.
    Bevan, M., Barnes, W.B., and Chilton, M.D. (1983) Structure of the nopaline synthase gene region of T-DNA.Nucleic Acids Res. 11, 369–385.CrossRefPubMedGoogle Scholar
  14. 14.
    Sambrook, J., and Russell, D.W. (2001)Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  15. 15.
    Darveau, A., Pelletier, A., and Perreault, J. (1995) PCR-mediated synthesis of chimeric molecules.Methods Neurosc. 26, 77–85.CrossRefGoogle Scholar
  16. 16.
    Bollag, D.M., Rozycki, M.D., and Edelstein, S.J. (1996) Protein methods (2 nd edition). Wiley-Liss, New York, USA.Google Scholar
  17. 17.
    Harlow, E., and Lane, D. (1988)Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, USA.Google Scholar
  18. 18.
    Johansen, L.K., and Carrington, J.C. (2001) Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system.Plant Physiol.126, 930–938.CrossRefPubMedGoogle Scholar
  19. 19.
    Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.Plant J.33, 949–956.CrossRefPubMedGoogle Scholar
  20. 20.
    Mattanovich, D., Rüker, F., da Câmara Machado, A., Laimer, M., Regner, F., Stein-kellner, H., Himmler, G., and Katinger, H. (1989) Efficient transformation of Agro-bacterium spp. By electroporation.Nucleic Acids Res. 17, 6747.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Marc-André D'Aoust
    • 1
  • Pierre-Olivier Lavoie
    • 1
  • Julie Belles-Isles
    • 1
  • Nicole Bechtold
    • 1
  • Michèle Martel
    • 1
  • Louis-P. Vézina
    • 1
  1. 1.Medicago inc.QuébecCanada

Personalised recommendations