The Assessment of T-Cell Apoptosis in Synovial Fluid

  • Karim Raza
  • Dagmar Scheel-Toellner
  • Janet M. Lord
  • Arne N. Akbar
  • Christopher D. Buckley
  • Mike Salmon
Part of the Methods in Molecular Medicine book series (MIMM, volume 136)


T-cell apoptosis is central to the resolution of chronic inflammation. Inhibition of this process of programmed cell death contributes to disease persistence in conditions such as rheumatoid arthritis. An understanding of T-cell apoptosis and its regulation is clearly important for understanding the pathophysiology of inflammatory disease. This chapter describes a number of apoptosis assays that can be used to measure T-cell apoptosis in synovial fluid. The choice of assay depends, in part, on the phase of apoptosis under investigation and this review puts this into context by introducing these phases and their regulation.

Key Words

Apoptosis T-cell synovial fluid rheumatoid arthritis 


  1. 1.
    Kerr, J. F., Wyllie, A. H., and Currie, A. R. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257.PubMedCrossRefGoogle Scholar
  2. 2.
    Raff, M. C. (1992) Social controls on cell survival and cell death. Nature 356, 397–400.PubMedCrossRefGoogle Scholar
  3. 3.
    Akbar, A. N., Borthwick, N. J., Wickremasinghe, R. G., et al. (1996) Interleukin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of antiapoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur. J. Immunol. 26, 294–299.PubMedCrossRefGoogle Scholar
  4. 4.
    Vella, A. T., Dow, S., Potter, T. A., Kappler, J., and Marrack, P. (1998) Cytokineinduced survival of activated T cells in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95, 3810–3815.PubMedCrossRefGoogle Scholar
  5. 5.
    Kaneko, S., Suzuki, N., Koizumi, H., Yamamoto, S., and Sakane, T. (1997) Rescue by cytokines of apoptotic cell death induced by IL-2 deprivation of human antigen-specific T cell clones. Clin. Exp. Immunol. 109, 185–193.PubMedCrossRefGoogle Scholar
  6. 6.
    Pilling, D., Akbar, A. N., Girdlestone, J., et al. (1999) Interferon-beta mediates stromal cell rescue of T cells from apoptosis. Eur. J. Immunol. 29, 1041–1050.PubMedCrossRefGoogle Scholar
  7. 7.
    Orteu, C. H., Poulter, L. W., Rustin, M. H., Sabin, C. A., Salmon, M., and Akbar, A. N. (1998) The role of apoptosis in the resolution of T cell-mediated cutaneous inflammation. J. Immunol. 161, 1619–1629.PubMedGoogle Scholar
  8. 8.
    Akbar, A. N., Borthwick, N., Salmon, M., et al. (1993) The significance of low Bcl-2 expression by CD45RO T cells in normal individuals and patients with acute viral infections. The role of apoptosis in T cell memory. J. Exp. Med. 178, 427–438.PubMedCrossRefGoogle Scholar
  9. 9.
    Lenardo, M., Chan, K. M., Hornung, F., et al. (1999) Mature T lymphocyte apoptosis-immune regulation in a dynamic and unpredictable antigenic environment. Annu. Rev. Immunol. 17, 221–253.PubMedCrossRefGoogle Scholar
  10. 10.
    Plas, D. R., Rathmell, J. C., and Thompson, C. B. (2002) Homeostatic control of lymphocyte survival: potential origins and implications. Nat. Immunol. 3, 515–521.PubMedCrossRefGoogle Scholar
  11. 11.
    Salmon, M. and Gaston, J. S. (1995) The role of T-lymphocytes in rheumatoid arthritis. Br. Med. Bull. 51, 332–345.PubMedGoogle Scholar
  12. 12.
    Matthews, N., Emery, P., Pilling, D., Akbar, A., and Salmon, M. (1993) Subpopulations of primed T helper cells in rheumatoid arthritis. Arthritis Rheum. 36, 603–607.PubMedCrossRefGoogle Scholar
  13. 13.
    Salmon, M., Pilling, D., Borthwick, N. J., et al. (1994) The progressive differentiation of primed T cells is associated with an increasing susceptibility to apoptosis. Eur. J. Immunol. 24, 892–899.PubMedCrossRefGoogle Scholar
  14. 14.
    Firestein, G. S., Yeo, M., and Zvaifler, N. J. (1995) Apoptosis in rheumatoid arthritis synovium. J. Clin. Invest. 96, 1631–1638.PubMedCrossRefGoogle Scholar
  15. 15.
    Salmon, M., Scheel-Toellner, D., Huissoon, A. P., et al. (1997) Inhibition of T cell apoptosis in the rheumatoid synovium. J. Clin. Invest. 99, 439–446.PubMedCrossRefGoogle Scholar
  16. 16.
    Salmon, M., Pilling, D., Borthwick, N. J., and Akbar, A. N. (1997) Inhibition of T cell apoptosis-a mechanism for persistence in chronic inflammation. The Immunologist. 5, 87–92.Google Scholar
  17. 17.
    Salmon, M. and Akbar, A. N. (1999) The role of apoptosis in rheumatoid arthritis. In: Challenges in rheumatoid arthritis, Bird, H. A. and Snaith, M. L., eds., Blackwell Science, pp. 25–39.Google Scholar
  18. 18.
    Akbar, A. N. and Salmon, M. (1997) Cellular environments and apoptosis: tissue microenvironments control activated T-cell death. Immunol. Today. 18, 72–76.PubMedCrossRefGoogle Scholar
  19. 19.
    Buckley, C. D., Pilling, D., Lord, J. M., Akbar, A. N., Scheel-Toellner, D., and Salmon, M. (2001) Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 22, 199–204.PubMedCrossRefGoogle Scholar
  20. 20.
    Ina, K., Itoh, J., Fukushima, K., et al. (1999) Resistance of Crohn’s disease T cells to multiple apoptotic signals is associated with a Bcl-2/Bax mucosal imbalance. J. Immunol. 163, 1081–1090.PubMedGoogle Scholar
  21. 21.
    Orteu, C. H., Rustin, M. H., O’Toole, E., et al. (2000) The inhibition of cutaneous T cell apoptosis may prevent resolution of inflammation in atopic eczema. Clin. Exp. Immunol. 122, 150–156.PubMedCrossRefGoogle Scholar
  22. 22.
    Nanki, T., Hayashida, K., El Gabalawy, H. S., et al. (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol. 165, 6590–6598.PubMedGoogle Scholar
  23. 23.
    Suzuki, Y., Rahman, M., and Mitsuya, H. (2001) Diverse transcriptional response of CD4(+) T cells to stromal cell-derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4(+) T cells. J. Immunol. 167, 3064–3073.PubMedGoogle Scholar
  24. 24.
    Atreya, R., Mudter, J., Finotto, S., et al. (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat. Med. 6, 583–588.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu, Z., Xu, X., Hsu, H. C., et al. (2003) CII-DC-AdTRAIL cell gene therapy inhibits infiltration of CII-reactive T cells and CII-induced arthritis. J. Clin. Invest. 112, 1332–1341.PubMedGoogle Scholar
  26. 26.
    Ogawa, Y., Ohtsuki, M., Uzuki, M., et al. (2003) Suppression of osteoclastogenesis in rheumatoid arthritis by induction of apoptosis in activated CD4+ T cells. Arthritis Rheum. 48, 3350–3358.PubMedCrossRefGoogle Scholar
  27. 27.
    Thornberry, N. A. and Lazebnik, Y. (1998) Caspases: enemies within. Science 281, 1312–1316.PubMedCrossRefGoogle Scholar
  28. 28.
    Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H. (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424.PubMedCrossRefGoogle Scholar
  29. 29.
    Krammer, P. H. (2000) CD95’s deadly mission in the immune system. Nature 407, 789–795.PubMedCrossRefGoogle Scholar
  30. 30.
    Kischkel, F. C., Hellbardt, S., Behrmann, I., et al. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579–5588.PubMedGoogle Scholar
  31. 31.
    Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85, 817–827.PubMedCrossRefGoogle Scholar
  32. 32.
    Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M. (1998) An induced proximity model for caspase-8 activation. J. Biol. Chem. 273, 2926–2930.PubMedCrossRefGoogle Scholar
  33. 33.
    Scheel-Toellner, D., Wang, K., Singh, R., et al. (2002) The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem. Biophys. Res. Commun. 297, 876–879.PubMedCrossRefGoogle Scholar
  34. 34.
    Scaffidi, C., Medema, J. P., Krammer, P. H., and Peter, M. E. (1997) FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J. Biol. Chem. 272, 26,953–26,958.PubMedCrossRefGoogle Scholar
  35. 35.
    Scaffidi, C., Fulda, S., Srinivasan, A., et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687.PubMedCrossRefGoogle Scholar
  36. 36.
    Yin, X. M., Wang, K., Gross, A., et al. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, H., Zhu, H., Xu, C. J., and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Gross, A., Yin, X. M., Wang, K., et al. (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156–1163.PubMedCrossRefGoogle Scholar
  39. 39.
    Li, F., Srinivasan, A., Wang, Y., Armstrong, R. C., Tomaselli, K. J., and Fritz, L. C. (1997) Cell-specific induction of apoptosis by microinjection of cytochrome c. Bcl-xL has activity independent of cytochrome c release. J. Biol. Chem. 272, 30,299–30,305.PubMedCrossRefGoogle Scholar
  40. 40.
    Zamzami, N., Marchetti, P., Castedo, M., et al. (1995) Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med. 181, 1661–1672.PubMedCrossRefGoogle Scholar
  41. 41.
    Kim, J. M. and Weisman, M. H. (2000) When does rheumatoid arthritis begin and why do we need to know? Arthritis Rheum. 43, 473–484.PubMedCrossRefGoogle Scholar
  42. 42.
    Lorenzo, H. K., Susin, S. A., Penninger, J., and Kroemer, G. (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death. Differ. 6, 516–524.PubMedCrossRefGoogle Scholar
  43. 43.
    Du, C., Fang, M., Li, Y., Li, L., and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Verhagen, A. M., Ekert, P. G., Pakusch, M., et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Zou, H., Henzel, W. J., Liu, X., Lutschg, A., and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405–413.PubMedCrossRefGoogle Scholar
  46. 46.
    Li, P., Nijhawan, D., Budihardjo, I., et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91, 479–489.PubMedCrossRefGoogle Scholar
  47. 47.
    Kluck, R. M., Bossy-Wetzel, E., Green, D. R., and Newmeyer, D. D. (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136.PubMedCrossRefGoogle Scholar
  48. 48.
    Yang, J., Liu, X., Bhalla, K., et al. (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132.PubMedCrossRefGoogle Scholar
  49. 49.
    Zheng, T. S., Schlosser, S. F., Dao, T., et al. (1998) Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo. Proc. Natl. Acad. Sci. USA 95, 13,618–13,623.PubMedCrossRefGoogle Scholar
  50. 50.
    Kane, D., Balint, P. V., and Sturrock, R. D. (2003) Ultrasonography is superior to clinical examination in the detection and localization of knee joint effusion in rheumatoid arthritis. J. Rheumatol. 30, 966–971.PubMedGoogle Scholar
  51. 51.
    Raza, K., Lee, C. Y., Pilling, D., et al. (2003) Ultrasound guidance allows accurate needle placement and aspiration from small joints in patients with early inflammatory arthritis. Rheumatology. (Oxford). 42, 976–979.CrossRefGoogle Scholar
  52. 52.
    Frasch, S. C., Henson, P. M., Nagaosa, K., Fessler, M. B., Borregaard, N., and Bratton, D. L. (2004) Phospholipid flip-flop and phospholipid scramblase 1 (PLSCR1) co-localize to uropod rafts in formylated Met-Leu-Phe-stimulated neutrophils. J. Biol. Chem. 279, 17,625–17,633.PubMedCrossRefGoogle Scholar
  53. 53.
    Dillon, S. R., Constantinescu, A. and Schlissel, M. S. (2001) Annexin V binds to positively selected B cells. J. Immunol. 166, 58–71.PubMedGoogle Scholar
  54. 54.
    Salvioli, S., Ardizzoni, A., Franceschi, C., and Cossarizza, A. (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411, 77–82.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Karim Raza
    • 1
  • Dagmar Scheel-Toellner
    • 2
  • Janet M. Lord
    • 2
  • Arne N. Akbar
    • 3
  • Christopher D. Buckley
    • 1
  • Mike Salmon
    • 1
  1. 1.MRC Centre for Immune Regulation, Institute of Biomedical Research BuildingUniversity of BirminghamBirminghamUK
  2. 2.MRC Centre for Immune RegulationUniversity of BirminghamBirminghamUK
  3. 3.Department of Immunology and Molecular PathologyRoyal Free and University College Medical SchoolLondonUK

Personalised recommendations