Skip to main content

In Vivo Phage Display Selection in the Human/SCID Mouse Chimera Model for Defining Synovial Specific Determinants

  • Protocol
Book cover Arthritis Research

Part of the book series: Methods in Molecular Medicine ((MIMM,volume 136))

Abstract

Phage display has represented a phenomenal technological advance of the last two decades. This technique is a very effective way of producing large numbers (up to 1012) of diverse peptides and proteins (including antibodies), presented as fusion proteins on the viral capsid, that can be used for isolating specific molecules for therapeutic targeting. The increasing realization of the importance of the vascular endothelium in chronic inflammation as well as in neoplastic growth/spreading has prompted the targeting of blood vessels using phage display. This technique has been very successful in vivo in animals in selecting tissue specific vascular determinants. However, one disadvantage of using “pure” animal models is that the ligands obtained in this way are, by definition, specific for the targeted animal and might not bind to the human homologues. For this reason we have developed a novel approach using in vivo phage display selection against human tissues transplanted into SCID animals. In particular, we have focused on the transplantation of human synovium, although we have also successfully grafted skin, lymphoid, and fetal gut into these animals. The strength of this model is that the human graft blood vessels form functional anastomoses with mouse subdermal vessels that allow the target of lumenally expressed human molecules via the mouse circulation. Here we first describe the technical procedure for the in vivo selection of synovial homing phage using a commercially available peptide phage library in SCID mice transplanted with human synovium. This is followed by the description of the quantification and isolation of putative synovial specific peptide sequences. Finally, we describe the methodology used to confirm peptide-binding specificity including a competitive inhibition assay with synthetic peptide and the parent phage. The information provided should enable the reader to apply this technology in an in vivo setting to target human tissues in order to identify novel organ specific determinants as well as to develop tissue specific drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith, G. P. (1985) Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface Science1315–1317.

    Google Scholar 

  2. Smith, G. P. and Scott, J. K. (1993) Libraries of peptides and proteins displayed on filamentous phage. Methods Enzymol. 217, 228–257.

    Article  CAS  PubMed  Google Scholar 

  3. Parmley, S. F. and Smith, G. P. (1988) Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene 73, 305–318.

    Article  CAS  PubMed  Google Scholar 

  4. Winter, G., Griffiths, A., Hawkins, R. E., and Hoogenboom, H. R. (1994) Making antibodies by phage display technology. Ann. Rev. Immunol. 12, 433–455.

    Article  CAS  Google Scholar 

  5. Samuelson, P., Gunneriusson, E., Nygren, P. A., and Stahl, S. (2002) Display of proteins on bacteria. J. Biotechnol. 96, 129–154.

    Article  CAS  PubMed  Google Scholar 

  6. Weaver-Feldhaus, J. M., Lou, J., Coleman, J. R., Siegel, R. W., Marks, J. D., and Feldhaus, M. J. (2004) Yeast mating for combinatorial Fab library generation and surface display. FEBS Lett. 564, 24–34.

    Article  CAS  PubMed  Google Scholar 

  7. Hanes, J., Schaffitzel, C., Knappik, A., and Pluckthun, A. (2000) Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  8. Giebel, L. B., Cass, R. T., Milligan, D. L., Young, D. C., Arze, R., and Johnson, C. R. (1995) Screening of cyclic peptide phage libraries identifies ligands that bind streptavidin with high affinities. Biochemistry. 34, 15,430–15,435.

    Article  CAS  PubMed  Google Scholar 

  9. Pistillo, M. P., Hammer, J., Bono, E., and Sinigaglia, F. (1997) A novel approach to human anti-HLA mABs production: Using of phage display library. Human Immunol. 57, 19–27.

    Article  CAS  Google Scholar 

  10. Marget, M., Sharma, B. B., Tesar, M., et al. (2000) Bypassing hybridoma technology: HLA-C reactive human single-chain antibody fragments (scFv) derived from a synthetic phage display library (HuCAL) and their potential to discriminate HLA class I specificities. Tissue Antigens. 56, 1–9.

    Article  CAS  PubMed  Google Scholar 

  11. Mazzucchelli, L., Burritt, J. B., Jesaitis, A. J., et al. (1999) Cell-specific peptide binding by human neutrophils Blood 93, 1738–1748.

    CAS  PubMed  Google Scholar 

  12. Roovers, R. C., van der, L. E., de Bruine, A. P., Arends, J. W., and Hoogenboom, H. R. (2001) Identification of colon tumour-associated antigens by phage antibody selections on primary colorectal carcinoma. Eur. J. Cancer. 37, 542–549.

    Article  CAS  PubMed  Google Scholar 

  13. Arap, W., Pasqualini, R., and Ruoslahti, E. (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 279, 377–380.

    Article  CAS  PubMed  Google Scholar 

  14. Arap, W., Haedicke, W., Bernasconi, M., et al. (2002) Targeting the prostate for destruction through a vascular address Proc. Natl. Acad. Sci. USA 99, 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  15. Rajotte, D. and Ruoslahti, E. (1999) Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display J. Biol. Chem. 274, 11,593–11,598.

    Article  CAS  PubMed  Google Scholar 

  16. Gerlag, D. M., Borges, E., Tak, P. P., et al. (2001) Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature. Arthritis Res. 3, 357–361.

    Article  CAS  PubMed  Google Scholar 

  17. Herrmann, A., Pieper, M., and Schrader, J. (1999) Selection of cell specific peptides in a rat carotid injury model using a random peptide-presenting bacterial library. Biochim. Biophys. Acta. 1472, 529–536.

    CAS  PubMed  Google Scholar 

  18. Borsum, T., Hagen, I., Henriksen, T., and Carlander, B. (1982) Alterations in the protein composition and surface structure of human endothelial cells during growth in primary culture Atherosclerosis 44, 367–378.

    Article  CAS  PubMed  Google Scholar 

  19. de Bono, D. P. and Green, C. (1984) The adhesion of different cell types to cultured vascular endothelium: effects of culture density and age. Br. J. Exp. Pathol. 65, 145–154.

    PubMed  Google Scholar 

  20. Wahid, S., Blades, M. C., De Lord, D., et al. (2000) Tumour necrosis factor-alpha (TNF-alpha) enhances lymphocyte migration into rheumatoid synovial tissue transplanted into severe combined immunodeficient (SCID) mice. Clin. Exp. Immunol. 122, 133–142.

    Article  CAS  PubMed  Google Scholar 

  21. Rendt, K. E., Barry, T. S., Jones, D. M., et al. (1993) Engraftment of human synovium into severe combined immune deficient mice. Migration of human peripheral blood T cells to engrafted human synovium and to mouse lymph nodes. J. Immunol. 151, 7324–7336.

    CAS  PubMed  Google Scholar 

  22. Jorgensen, C., Couret, I., Canovas, F., et al. (1996) Mononuclear cell retention in rheumatoid synovial tissue engrafted in severe combined immunodeficient (SCID) mice is up-regulated by tumour necrosis factor-alpha (TNF-alpha) and mediated through intercellular adhesion molecule-1 (ICAM-1). Clin. Exp. Immunol. 106, 20–25.

    CAS  PubMed  Google Scholar 

  23. Lee, L., Buckley, C., Blades, M. C., Panayi, G., George, A. J., and Pitzalis, C. (2002) Identification of synovium-specific homing peptides by in vivo phage display selection. Arthritis Rheum. 46, 2109–2120.

    Article  CAS  PubMed  Google Scholar 

  24. George, A. J., Lee, L., and Pitzalis, C. (2003) Isolating ligands specific for human vasculature using in vivo phage selection. Trends Biotechnol. 21, 199–203.

    Article  CAS  PubMed  Google Scholar 

  25. Koivunen, E., Gay, D. A., and Ruoslahti, E. (1993) Selection of peptides binding to the alpha 5 beta 1 integrin from phage display library. J. Biol. Chem. 268, 20,205–20,210

    CAS  PubMed  Google Scholar 

  26. Pasqualini, R., Koivunen, E., and Ruoslahti, E. (1995) A peptide isolated from phage display libraries ia a structual and functional mimic of an RGD-binding site on integrins. J. Cell Biol. 130, 1189–1196.

    Article  CAS  PubMed  Google Scholar 

  27. Koivunen, E., Wang, B., and Ruoslahti, E. (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (N. Y. ). 13, 265–270.

    Article  CAS  Google Scholar 

  28. Pitzalis, C., Cauli, A., Pipitone, N., et al. (1996) Cutaneous lymphocyte antigenpositive T lymphocytes preferentially migrate to the skin but not to the joint in psoratic arthritis. Arthritis Rheum. 39, 137–145.

    Article  CAS  PubMed  Google Scholar 

  29. Blades, M. C., Manzo, A., Ingegnoli, F., et al. (2002) Stromal cell-derived factor 1 (CXCL12) induces human cell migration into human lymph nodes transplanted into SCID mice. J. Immunol. 168, 4308–4317.

    CAS  PubMed  Google Scholar 

  30. McCune, J. M., Namikawa, R., Kaneshima, H., et al. (1988) The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science 241, 1632–1639.

    Article  CAS  PubMed  Google Scholar 

  31. Barry, T. S., Jones, D. M., Richter, C. B., and Haynes, B. F. (1991) Successful engraftment of human postnatal thymus in severe combined immune deficient (SCID) mice: differential engraftment of thymic components with irradiation versus anti-asialo GM-1 immunosuppressive regimens. J. Exp. Med. 173, 167–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Lee, L., Garrood, T., Pitzalis, C. (2007). In Vivo Phage Display Selection in the Human/SCID Mouse Chimera Model for Defining Synovial Specific Determinants. In: Cope, A.P. (eds) Arthritis Research. Methods in Molecular Medicine, vol 136. Humana Press. https://doi.org/10.1007/978-1-59745-402-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-402-5_26

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-918-5

  • Online ISBN: 978-1-59745-402-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics