Skip to main content

Prediction of Protein Interaction Based on Similarity of Phylogenetic Trees

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 484))

Abstract

Computational methods for predicting protein interaction partners are becoming increasingly popular. Many of them are mature enough to be widely used by molecular biologists who can look for proteins related to the protein of interest in order to infer information about its context in the cell. In this chapter we describe the use of the mirrortree set of programs and related software for predicting protein interactions. They are all based on the idea that interacting or functionally related proteins tend to show similar phylogenetic trees due to coevolution. The basic mirrortree program can be used to calculate the similarity between the phylogenetic trees implicit in the multiple sequence alignments of two protein families. The ECID database contains protein interactions and relationships from different computational and experimental sources for the model organism Escherichia coli, including the ones generated with mirrortree. Finally, the TSEMA server uses the concept of tree similarity between interacting families to look for the best mapping between two families of interacting proteins: which member in one family interacts with which member in the other.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Salwinski, L. and Eisenberg, D. (2003) Computational methods of analysis of protein-protein interactions. Curr. Opin. Struct. Biol. 13, 377–382.

    Article  PubMed  CAS  Google Scholar 

  2. Valencia, A. and Pazos, F. (2002) Computational methods for the prediction of protein interactions. Curr. Opin. Struct. Biol. 12, 368–373.

    Article  PubMed  CAS  Google Scholar 

  3. Huynen, M., Snel, B., Lathe, W., and Bork, P. (2000) Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. Genome Res. 10, 1204–1210.

    Article  PubMed  CAS  Google Scholar 

  4. von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., and Bork, P. (2002) Comparative assessment of large scale data sets of protein-protein interactions. Nature 417, 399–403.

    Article  Google Scholar 

  5. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., and Snel, B. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261.

    Article  Google Scholar 

  6. Fryxell, K.J. (1996) The coevolution of gene family trees. Trends Genet. 12, 364–369.

    Article  PubMed  CAS  Google Scholar 

  7. Goh, V.-S., Bogan, A. A., Joachimiak, M., Walther, D., and Cohen, F.E. (2000) Coevolution of proteins with their interaction partners. J. Mol. Biol. 299, 283–293.

    Article  PubMed  CAS  Google Scholar 

  8. Pazos, F. and Valencia, A. (2001) Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng. 14, 609–614.

    Article  PubMed  CAS  Google Scholar 

  9. Pazos, F., Ranea, J. A. G., Juan, D., and Sternberg, M. J. E. (2005) Assessing protein co-evolution in the context of the tree of life assists in the prediction of the interactome. J. Mol. Biol., 352, 1002–1015.

    Article  PubMed  CAS  Google Scholar 

  10. Labedan, B., Xu, Y., Naumoff, D. G., and Glansdorff, N. (2004) Using quaternary structures to assess the evolutionary history of proteins: the case of the aspartate carbamoyltransferase. Mol. Biol. Evol. 21, 364–373.

    Article  PubMed  CAS  Google Scholar 

  11. Izarzugaza, J. M., Juan, D., Pons, C., Ranea, J. A., Valencia, A., and Pazos, F. (2006) TSEMA: interactive prediction of protein pairings between interacting families. Nucleic Acids Res. 34, W315–319.

    Article  PubMed  CAS  Google Scholar 

  12. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective of protein families. Science 278, 631–637.

    Article  PubMed  CAS  Google Scholar 

  13. Pazos, F. and Valencia, A. (2002) In silico two-hybrid system for the selection of physically interacting protein pairs. Proteins 47, 219–227.

    Article  PubMed  CAS  Google Scholar 

  14. Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., and Yeates, T. O. (1999) Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96, 4285–4288.

    Article  PubMed  CAS  Google Scholar 

  15. Dandekar, T., Snel, B., Huynen, M., and Bork, P. (1998) Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem. Sci. 23, 324–328.

    Article  PubMed  CAS  Google Scholar 

  16. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res. 32, D277–280.

    Article  PubMed  CAS  Google Scholar 

  17. Hoffmann, R. and Valencia, A. (2004) A gene network for navigating the literature. Nat. Genet. 36, 664.

    Article  PubMed  CAS  Google Scholar 

  18. Ramani, A. K. and Marcotte, E. M. (2003) Exploiting the co-evolution of interacting proteins to discover interaction specificity. J. Mol. Biol. 327, 273–284.

    Article  PubMed  CAS  Google Scholar 

  19. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31, 3497–3500.

    Article  PubMed  CAS  Google Scholar 

  20. Perrière, G. and Gouy, M. (1996) WWW-Query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.

    Article  PubMed  Google Scholar 

  21. Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., et al. (2004) The Pfam protein families database. Nucleic Acids Res. 32, D138–141.

    Article  PubMed  CAS  Google Scholar 

  22. Sato, T., Yamanishi, Y., Kanehisa, M., and Toh, H. (2005) The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21, 3482–3489.

    Article  PubMed  CAS  Google Scholar 

  23. Marcotte, E. M., Pellegrini, M., Ho-Leung, N., Rice, D. W., Yeates, T. O., and Eisenberg, D. (1999) Detecting protein function and protein-protein interactions from genome sequences. Science 285, 751–753.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Pazos, F., Juan, D., Izarzugaza, J.M.G., Leon, E., Valencia, A. (2008). Prediction of Protein Interaction Based on Similarity of Phylogenetic Trees. In: Thompson, J.D., Ueffing, M., Schaeffer-Reiss, C. (eds) Functional Proteomics. Methods in Molecular Biology, vol 484. Humana Press. https://doi.org/10.1007/978-1-59745-398-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-398-1_31

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-971-0

  • Online ISBN: 978-1-59745-398-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics