Skip to main content

PepSeeker: Mining Information from Proteomic Data

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 484))

Abstract

Driven by advances in mass spectrometry and analytical chemistry, coupled with the expanding number of completely sequenced genomes, proteomics is becoming a widely exploited technology for characterizing the proteins found in living systems. As proteomics becomes increasingly more high-throughput there is a parallel need for storage of the large quantities of data generated, to support data exchange and allow further analyses. The capture and storage of such data, along with subsequent release and dissemination, not only aid in sharing of the data throughout the proteomics community but also provide scientific insights into the observations between different laboratories, instruments, and software. Growing numbers of resources offer a range of approaches for the capture, storage, and dissemination of proteomic experimental data reflecting the fact that proteomics has now come of age in the postgenomic era and is delivering large, complex datasets that are rich in information. This chapter demonstrates how one such resource, PepSeeker, can be used to mine useful information from proteomic data, which can then be exploited for peptide identification algorithms via a better understanding of how peptides fragment inside mass spectrometers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.

    Article  PubMed  CAS  Google Scholar 

  2. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  3. Eng, J. K., Mccormack, A. L., and Yates, J. R. (1994) An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989.

    Article  CAS  Google Scholar 

  4. Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu, M., Maynard, D. M., Yang, X. Y., Shi, W. Y., and Bryant, S. H. (2004) Open mass spectrometry search algorithm. J. Proteome Res. 3, 958–964.

    Article  PubMed  CAS  Google Scholar 

  5. Colinge, J., Masselot, A., Cusin, I., Mahe, E., Niknejad, A., Argoud-Puy, G., Reffas, S., Bederr, N., Gleizes, A., Rey, P. A., and Bougueleret, L. (2004) High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics. Proteomics 4, 1977–1984.

    Article  PubMed  CAS  Google Scholar 

  6. Guo, T., Lee, C. S., Wang, W. J., DeVoe, D. L., and Balgley, B. M. (2006) Capillary separations enabling tissue proteomics-based biomarker discovery. Electrophoresis 27, 3523–3532.

    Article  PubMed  CAS  Google Scholar 

  7. Huang, Y. F., Huang, C. C., Hu, C. C., and Chang, H. T. (2006) Capillary electrophoresis-based separation techniques for the analysis of proteins. Electrophoresis 27, 3503–3522.

    Article  PubMed  CAS  Google Scholar 

  8. Kislinger, T., Gramolini, A. O., MacLennan, D. H., and Emili, A. (2005) Multidimensional protein identification technology (MudPIT): technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J. Am. Soc. Mass Spectrom. 16, 1207–1220.

    Article  PubMed  CAS  Google Scholar 

  9. Yates, J. R. (1998) Database searching using mass spectrometry data. Electrophoresis 19, 893–900.

    Article  PubMed  CAS  Google Scholar 

  10. Wysocki, V. H., Resing, K. A., Zhang, Q. F., and Cheng, G. L. (2005) Mass spectrometry of peptides and proteins. Methods 35, 211–222.

    Article  PubMed  CAS  Google Scholar 

  11. Keller, A., Nesvizhskii, A. I., Kolker, E., and Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74, 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  12. Craig, R., Cortens, J. P., and Beavis, R. C. (2004) Open source system for analyzing, validating, and storing protein identification data. J. Proteome Res. 3, 1234–1242.

    Article  PubMed  CAS  Google Scholar 

  13. Desiere, F., Deutsch, E. W., King, N. L., Nesvizhskii, A. I., Mallick, P., Eng, J., Chen, S., Eddes, J., Loevenich, S. N., and Aebersold, R. (2006) The Peptide Atlas project. Nucleic Acids Res. 34, D655–D658.

    Article  PubMed  CAS  Google Scholar 

  14. Jones, P., Côté, R. G., Martens, L., Quinn, A. F., Taylor, C. F., Derache, W., Hermjakob, H., and Apweiler, R. (2006) PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34, D659–D663.

    Article  PubMed  CAS  Google Scholar 

  15. Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., Gevaert, K., Vandekerckhove, J., and Apweiler, R. (2005) PRIDE: the proteomics identifications database. Proteomics 5, 3537–3545.

    Article  PubMed  CAS  Google Scholar 

  16. McLaughlin, T., Siepen, J. A., Selley, J., Lynch, J. A., Lau, K. W., Yin, H. J., Gaskell, S. J., and Hubbard, S. J. (2006) PepSeeker: a database of proteome peptide identifications for investigating fragmentation patterns. Nucleic Acids Res. 34, D649–D654.

    Article  PubMed  CAS  Google Scholar 

  17. Prince, J. T., Carlson, M. W., Wang, R., Lu, P., and Marcotte, E. M. (2004) The need for a public proteomics repository. Nat. Biotechnol. 22, 471–472.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor, C. F., Hermjakob, H., Julian, R. K., Garavelli, J. S., Aebersold, R., and Apweiler, R. (2006) The work of the Human Proteome Organisation’s Proteomics Standards Initiative (HUPO PSI). OMICS 10, 145–151.

    Article  PubMed  CAS  Google Scholar 

  19. Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, R., Salwinski, L., Ceol, A., Moore, S., Orchard, S., Sarkans, U., von Mering, C., Roechert, B., Poux, S., Jung, E., Mersch, H., Kersey, P., Lappe, M., Li, Y.X., Zeng, R., Rana, D., Nikolski, M., Husi, H., Brun, C., Shanker, K., Grant, S. G. N., Sander, C., Bork, P., Zhu, W. M., Pandey, A., Brazma, A., Jacq, B., Vidal, M., Sherman, D., Legrain, P., Cesareni, G., Xenarios, L., Eisenberg, D., Steipe, B., Hogue, C., and Apweiler, R. (2004) The HUPOPSI’s Molecular Interaction format—a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177–183.

    Article  PubMed  CAS  Google Scholar 

  20. Pedrioli, P. G. A., Eng, J. K., Hubley, R., Vogelzang, M., Deutsch, E. W., Raught, B., Pratt, B., Nilsson, E., Angeletti, R. H., Apweiler, R., Cheung, K., Costello, C. E., Hermjakob, H., Huang, S., Julian, R. K., Kapp, E., McComb, M. E., Oliver, S. G., Omenn, G., Paton, N. W., Simpson, R., Smith, R., Taylor, C. F., Zhu, W. M., and Aebersold, R. (2004) A common open representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22, 1459–1466.

    Article  PubMed  CAS  Google Scholar 

  21. Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., and Huber, W. (2005) BioMart and Bioconductor: a powerful link between biological databases and microarray data analysis. Bioinformatics 21, 3439–3440.

    Article  PubMed  CAS  Google Scholar 

  22. Breci, L. A., Tabb, D. L., Yates, J. R., and Wysocki, V. H. (2003) Cleavage hboxN-terminal to proline: analysis of a database of peptide tandem mass spectra. Anal. Chem. 75, 1963–1971.

    Article  PubMed  CAS  Google Scholar 

  23. Schaaff, T. G., Cargile, B. J., Stephenson, J. L., and McLuckey, S. A. (2000) Ion trap collisional activation of the (M+2H)(2+)−(M+17H)(17+) ions of human hemoglobin beta-chain. Anal. Chem. 72, 899–907.

    Article  PubMed  CAS  Google Scholar 

  24. Vaisar, T. and Urban, J. (1996) Probing the proline effect in CID of protonated peptides. J. Mass Spectrom. 31, 1185–1187.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, Totowa, NJ

About this protocol

Cite this protocol

Siepen, J.A., Selley, J.N., Hubbard, S.J. (2008). PepSeeker: Mining Information from Proteomic Data. In: Thompson, J.D., Ueffing, M., Schaeffer-Reiss, C. (eds) Functional Proteomics. Methods in Molecular Biology, vol 484. Humana Press. https://doi.org/10.1007/978-1-59745-398-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-398-1_21

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-971-0

  • Online ISBN: 978-1-59745-398-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics