Skip to main content

Interpreting Microarray Results With Gene Ontology and MeSH

  • Protocol
Microarray Data Analysis

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 377))

Abstract

Methods are described to take a list of genes generated from a microarray experiment and interpret these results using various tools and ontologies. A workflow is described that details how to convert gene identifiers with SOURCE and MatchMiner and then use these converted gene lists to search the gene ontology (GO) and the medical subject headings (MeSH) ontology. Examples of searching GO with DAVID, EASE, and GOMiner are provided along with an interpretation of results. The mining of MeSH using high-density array pattern interpreter with a set of gene identifiers is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bard, J. B. and Rhee, S. Y. (2004) Ontologies in biology: design, applications and future challenges. Nat. Rev. Genet. 5, 213–222.

    Article  PubMed  CAS  Google Scholar 

  2. Gene Ontology Consortium (2006). The Gene Ontology project in 2006. Nucleic Acids Res. 34 (database issue), D322–D326.

    Article  Google Scholar 

  3. Lowe, H. J. and Barnett, G. O. (1994) Understanding and using the medical subject headings (MeSH) vocabulary to perform literature searches. JAMA 271, 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  4. Diehn, M., Sherlock, G., Binkley, G., et al. (2003) SOURCE: a unified genomic resource of functional annotations, ontologies, and gene expression data. Nucleic Acids Res. 31, 219–223.

    Article  PubMed  CAS  Google Scholar 

  5. Bussey, K. J., Kane, D., Sunshine, M., et al. (2003) MatchMiner: a tool for batch navigation among gene and gene product identifiers. Genome Biol. 4, R27.

    Article  PubMed  Google Scholar 

  6. Ashburner, M., Ball, C. A., Blake, J. A., et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29.

    Article  PubMed  CAS  Google Scholar 

  7. Blake, J. (2004) Bio-ontologies-fast and furious. Nat. Biotechnol. 22, 773–774.

    Article  PubMed  CAS  Google Scholar 

  8. Masys, D. R., Welsh, J. B., Fink, J. L., et al. (2001) Use of keyword hierarchies to interpret gene expression patterns. Bioinformatics 17, 319–326.

    Article  PubMed  CAS  Google Scholar 

  9. Khatri, P., Draghici, S., Ostermeier, C., and Krawetz, S. (2002) Profiling gene expression using onto-express. Genomics 79, 266–270.

    Article  PubMed  CAS  Google Scholar 

  10. Al-Shahrour, F., Diaz-Uriarte, R., and Dopazo, J. (2004) FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580.

    Article  PubMed  CAS  Google Scholar 

  11. Beissbarth, T. and Speed, T. P. (2004) GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics 20, 1464–1465.

    Article  PubMed  CAS  Google Scholar 

  12. Ben-Shaul, Y., Bergman, H., and Soreq, H. (2005) Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression. Bioinformatics 21, 1129–1137.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Osborne, J.D., Zhu, L.(., Lin, S.M., Kibbe, W.A. (2007). Interpreting Microarray Results With Gene Ontology and MeSH. In: Korenberg, M.J. (eds) Microarray Data Analysis. Methods in Molecular Biology™, vol 377. Humana Press. https://doi.org/10.1007/978-1-59745-390-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-390-5_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-540-8

  • Online ISBN: 978-1-59745-390-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics