Energy Systems for ATP Regeneration in Cell-Free Protein Synthesis Reactions

  • Kara A. Calhoun
  • James R. Swartz
Part of the Methods in Molecular Biology™ book series (MIMB, volume 375)


Supplying energy for cell-free protein synthesis reactions is one of the biggest challenges to the success of these systems. Oftentimes, short reaction duration is attributed to an unstable energy source. Traditional cell-free reactions use a compound with a high-energy phosphate bond, such as phosphoenolpyruvate, to generate the ATP required to drive transcription and translation. However, recent work has led to better understanding and activation of the complex metabolism that can occur during cell-free reactions. We are now able to generate ATP using energy sources that are less expensive and more stable. These energy sources generally involve multistep enzymatic reactions or recreate entire energy-generating pathways, such as glycolysis and oxidative phosphorylation. We describe the various types of energy sources used in cell-free reactions, give examples of the major classes, and demonstrate protocols for successful use of three recently developed energy systems: PANOxSP, cytomim, and glucose.

Key Words

Cell-free protein synthesis in vitro transcription-translation energy source PANOxSP cytomim glycolysis 


  1. 1.
    Jewett, M. C., Voloshin, A., and Swartz, J. (2002) in Gene Cloning and Expression Technologies, (Weiner, M. and Lu, Q., eds.), Eaton Publishing, Westborough, MA, pp. 391–411.Google Scholar
  2. 2.
    Yao, S.-L., Shen, X.-C., and Suzuki, E. (1997) J. Ferment. Bioeng. 84, 7–13.CrossRefGoogle Scholar
  3. 3.
    Michel-Reydellet, N., Calhoun, K., and Swartz, J. (2004) Amino acid stabilization for cell-free protein synthesis by modification of the Escherichia coli genome. Metab. Eng. 6, 197–203.CrossRefPubMedGoogle Scholar
  4. 4.
    Jewett, M. C. and Swartz, J. R. (2004) Mimicking the Escherichia coli cytoplasmic environment activates long-lived and efficient cell-free protein synthesis. Biotechnol. Bioeng. 86, 19–26.CrossRefPubMedGoogle Scholar
  5. 5.
    Kim, D. M. and Swartz, J. R. (2001) Regeneration of adenosine triphosphate from glycolytic intermediates for cell-free protein synthesis. Biotechnol. Bioeng. 74, 309–316.CrossRefPubMedGoogle Scholar
  6. 6.
    Kim, D.-M. and Swartz, J. R. (2000) Biotechnol. Lett. 22, 1537–1542.CrossRefGoogle Scholar
  7. 7.
    Kim, R. G., and Choi, C. Y. (2000) Expression-independent consumption of substrates in cell-free expression system from Escherichia coli. J. Biotechnol. 84, 27–32.CrossRefGoogle Scholar
  8. 8.
    Spirin, A. S., Baranov, V. I., Ryabova, L. A., Ovodov, S. Y., and Alakhov, Y. B. (1988) A continuous cell-free translation system capable of producing polypeptides in high yield. Science 242, 1162–1164.CrossRefPubMedGoogle Scholar
  9. 9.
    Kim, D. M., Kigawa, T., Choi, C. Y., and Yokoyama, S. (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239, 881–886.CrossRefPubMedGoogle Scholar
  10. 10.
    Ryabova, L. A., Vinokurov, L. M., Shekhovtsova, E. A., Alakhov, Y. B., and Spirin, A. S. (1995) Acetyl phosphate as an energy source for bacterial cell-free translation systems. Anal. Biochem. 226, 184–186.CrossRefPubMedGoogle Scholar
  11. 11.
    Calhoun, K., and Swartz, J. (2005) Energizing cell-free protein synthesis with glucose metabolism. Biotechnol. Bioeng. 90, 606–613.CrossRefPubMedGoogle Scholar
  12. 12.
    Swartz, J., Jewett, M. C., and Woodrow, K. (2004) in Recombinant Gene Expression: Reviews and Protocols, (Balbas, P. and Lorence, A., eds.), Humana Press, Totowa, NJ, pp. 169–182.Google Scholar
  13. 13.
    Stryer, L. (1995) Biochemistry. W. H. Freeman and Company, New York.Google Scholar
  14. 14.
    Shen, X.-C., Yao, S.-L., Terada, S., Nagamune, T., and Suzuki, E. (1998) Biochem. Eng. J. 2, 23–28.CrossRefGoogle Scholar
  15. 15.
    Kim, D. M., and Swartz, J. R. (1999) Prolonging cell-free protein synthesis with a novel ATP regeneration system. Biotechnol. Bioeng. 66, 180–188.CrossRefPubMedGoogle Scholar
  16. 16.
    Yin, G., and Swartz, J. R. (2004) Enhancing multiple disulfide bonded protein folding in a cell-free system. Biotechnol. Bioeng. 86, 188–195.CrossRefPubMedGoogle Scholar
  17. 17.
    Kim, D. M., and Swartz, J. R. (2004) Efficient production of a bioactive, multiple disulfide-bonded protein using modified extracts of Escherichia coli. Biotechnol. Bioeng. 85, 122–129.CrossRefPubMedGoogle Scholar
  18. 18.
    Shimizu, Y., Inoue, A., Tomari, Y., et al. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755.CrossRefPubMedGoogle Scholar
  19. 19.
    Sitaraman, K., Esposito, D., Klarmann, G., Le Grice, S. F., Hartley, J. L., and Chatterjee, D. K. (2004) A novel cell-free protein synthesis system. J. Biotechnol. 110, 257–263.CrossRefPubMedGoogle Scholar
  20. 20.
    Zawada, J. and Swartz, J. (2005) Biotechnol. Bioeng. 89, 407–415.CrossRefPubMedGoogle Scholar
  21. 21.
    Liu, D. V., Zawada, J., and Swartz, J. (in press) Biotechnol. Prog. Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Kara A. Calhoun
    • 1
  • James R. Swartz
    • 1
  1. 1.Department of Chemical EngineeringStanford UniversityStanford

Personalised recommendations