Reporter Genes

  • Alison HuttlyEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)


Reporter genes have been widely used in plant molecular biology, typically to discern patterns of gene expression, but also as markers of transformed cells during stable transformation procedures.

The ideal marker gene would be expected to display characteristics such as ease and cheapness of use, lack of toxicity, and robustness; and the most commonly used ones – GUS, GFP, LUC, and C1 + R/B– (anthocyanin accumulation) exhibit most if not all of these properties. Each, however, differs in potentially important ways, and before deciding which to use it is important to consider carefully your particular set of experiments and the plant tissue you will be using. In this chapter, I will introduce each marker, outline protocols for their use, and discuss their strengths and weaknesses.


Reporter genes GUS LUC GFP C1 + R/B anthocyanin accumulation. 


  1. 1.
    JeffersonR. A. (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5,387–405.CrossRefGoogle Scholar
  2. 2.
    GuivarchA., Caissard, J. C., Azmi, A., Elmayan, T., Chriqui, D. and Tepfer, M. (1996) In situ. detection of expression of the gus reporter gene transgenic plants: ten years of blue genes Transgenic Res. 5,281–288.CrossRefGoogle Scholar
  3. 3.
    MartinT., Wohner, E. R., Hummel, S., Willmitzer, L., and Frommer, W. B. (1992) Gallagher, S. R., The GUS reporter system as a tool to study plant gene expression, in GUS Protocols, (Academic, San Diego, pp. 23–39.ed.),Google Scholar
  4. 4.
    SherfB. A. and Wood, K. V. (1994) Firefly luciferase engineered for improved genetic reporting. Promega Notes 49,14.Google Scholar
  5. 5.
    LonsdaleD. M., Moisan, L. J. and Harvey, A. J. (1998) The effect of altered codon usage on luciferase activity in tobacco, maize and wheat. Plant Cell Rep. 17,396–399.CrossRefGoogle Scholar
  6. 6.
    Ford, S. R. LFR. (1998) RobertA.LaRossa Improvements in the application of firefly luciferase assays, in Bioluminescence Methods and ProtocolsHumana,Totowa3–20Google Scholar
  7. 7.
    Leeuwen vanW., Hagendoorn, M. J. M., Ruttink, T., van Poecke, R., van der Plas, L. H. W. and Kvd, A. R. (2000) The use of the luciferase reporter system for in planta gene expression studies. Plant Mol. Biol. Rep. 18,143a–143t.CrossRefGoogle Scholar
  8. 8.
    MillarA. J., Short, S. R., Chua, N. H. and Kay, S. A. (1992) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4,1075–1087.CrossRefGoogle Scholar
  9. 9.
    KayS. A., Millar, A. J., Smith, K. W., Anderson, S. L., Brandes, C. and Hall, J. C. (1994) Video imaging of regulated firefly luciferase activity in transgenic plants and Drosophila, Promega Notes 4922.Google Scholar
  10. 10.
    LueehrsenK. R. and Walbot, V. (1993) Firefly luciferase as a reporter for plant gene expression studies. Promega Notes 44,24.Google Scholar
  11. 11.
    WelshD. K. and Kay, S. A. (2005) Bioluminescence imaging in living organisms. Curr. Opin. Biotechnol. 16,73–78.CrossRefGoogle Scholar
  12. 12.
    HarwoodW. A., Ross, S. M., Bulley, S. M., Travella, S., Busch, B., Harden, J. and Snape, J. W. (2002) Use of the firefly luciferase gene in a barley (Hordeum vulgare. ) transformation system Plant Cell Rep. 21,320–326.CrossRefGoogle Scholar
  13. 13.
    BourdonV., Ladbrooke, Z., Wickham, A., Lonsdale, D. and Harwood, W. (2002) Homozygous transgenic wheat plants with increased luciferase activity do not maintain their high level of expression in the next generation. Plant Sci. 163,297–305.CrossRefGoogle Scholar
  14. 14.
    Calderon-VillalobosL. I. A., Kuhnle, C., Li, H. B., Rosso, M., Weisshaar, B. and Schwechheimer, C. (2006) LucTrap vectors are tools to generate luciferase fusions for the quantification of transcript and protein abundance in vivo. Plant Physiol. 141,3–14.CrossRefGoogle Scholar
  15. 15.
    CubittA. B., Heim, R., Adams, S. R., Boyd, A. E., Gross, L. A. and Tsien, R. Y. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem. Sci. 20,448–455.CrossRefGoogle Scholar
  16. 16.
    ShanerN. C., Steinbach, P. A. and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat. Methods 2,905–909.CrossRefGoogle Scholar
  17. 17.
    SiemeringK. R., Golbik, R., Sever, R. and Haseloff, J. (1996) Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6,1653–1663.CrossRefGoogle Scholar
  18. 18.
    DixitR., Cyr, R. and Gilroy, S. (2006) Using intrinsically fluorescent proteins for plant cell imaging. Plant J. 45,599–615.CrossRefGoogle Scholar
  19. 19.
    BrandizziF., Fricker, M. and Hawes, C. (2002) A greener world: the revolution in plant bioimaging. Nat. Rev. Mol. Cell Biol. 3,520–530.CrossRefGoogle Scholar
  20. 20.
    HuberM., Hahn, R. and Hess, D. (2002) High transformation frequencies obtained from a commercial wheat (Triticum aestivum. L. cv. ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection Mol. Breed. 10,19–30.CrossRefGoogle Scholar
  21. 21.
    MurrayF., Brettell, R., Matthews, P., Bishop, D. and Jacobsen, J. (2004) Comparison of Agrobacterium. -mediated transformation of four barley cultivars using the GFP and GUS reporter genes Plant Cell Rep. 22,397–402.CrossRefGoogle Scholar
  22. 22.
    JordanM. C. (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19,1069–1075.CrossRefGoogle Scholar
  23. 23.
    ChoM. J., Choi, H. W., Okamoto, D., Zhang, S. and Lemaux, P. G. (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures. Plant Cell Rep. 21,467–474.Google Scholar
  24. 24.
    RemansT., Schenk, P. M., Manners, J. M., Grof, C. P. L. and Elliott, A. R. (1999) A protocol for the fluorometric quantification of mGFP5-ER and sGFP(S65T) in transgenic plants. Plant Mol. Biol. Rep. 17,385–395.CrossRefGoogle Scholar
  25. 25.
    Winkel-ShirleyB. (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126,485–493.CrossRefGoogle Scholar
  26. 26.
    LepiniecL., Debeaujon, I., Routaboul, J. M., Baudry, A., Pourcel, L., Nesi, N. and Caboche, M. (2006) Genetics and biochemistry of seed flavonoids. Ann. Rev. Plant Biol. 57,405–430.CrossRefGoogle Scholar
  27. 27.
    IraniN. G. and Grotewold, E. (2005) Light-induced morphological alteration in anthocyanin-accumulating vacuoles of maize cells. BMC Plant Biol. 5,7–22.CrossRefGoogle Scholar
  28. 28.
    HoltonT. A. and Cornish, E. C.. (195) Genetics and biochemistry of anthocyanin biosynthesis Plant Cell, 71071–1083.CrossRefGoogle Scholar
  29. 29.
    MolJ., Grotewold, E. and Koes, R. (1998) How genes paint flowers and seeds. Trends Plant Sci. 3,212–217.CrossRefGoogle Scholar
  30. 30.
    YoderJ. I., Belzile, F., Tong, Y. and Goldsbrough, A. (1994) Visual markers for tomato derived from the anthocyanin biosynthetic pathway. Euphytica 79,163–167.CrossRefGoogle Scholar
  31. 31.
    ConeK. C., Cocciolone, S. M., Burr, F. A. and Burr, B. (1993) Maize anthocyanin regulatory gene PL is a duplicate of C1 that functions in the plant. Plant Cell, 51795–1805.CrossRefGoogle Scholar
  32. 32.
    ConsonniG., Geuna, F., Gavazzi, G. and Tonelli, C. (1993) Molecular homology among members of the R-gene family in maize. Plant J. 3,335–346.CrossRefGoogle Scholar
  33. 33.
    LudwigS. R., Bowen, B., Beach, L. and Wessler, S. R. (1990) A regulatory gene as a novel visible marker for maize transformation. Science 247,449–450.CrossRefGoogle Scholar
  34. 34.
    GoffS. A., Klein, T. M., Roth, B. A., Fromm, M. E., Cone, K. C., Radicella, J. P. and Chandler, V. L. (1990) Transactivation of anthocyanin biosynthetic genes following transfer of B-regulatory genes into maize tissues. EMBO J. 9,2517–2522.Google Scholar
  35. 35.
    LloydA. M., Walbot, V. and Davis, R. W. (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulator-R and regulator-C1. Science 258,1773–1775.CrossRefGoogle Scholar
  36. 36.
    KoesR., Verweij, W. and Quattrocchio, F. (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci. 10,236–242.CrossRefGoogle Scholar
  37. 37.
    ShinY. M., Park, H. J., Yim, S. D., Baek, N. I., Lee, C. H., An, G. H. and Woo, Y. M. (2006) Transgenic rice lines expressing maize C1 and R-S regulatory genes produce various flavonoids in the endosperm. Plant Biotech. J. 4,303–315.CrossRefGoogle Scholar
  38. 38.
    McCormacA. C., Wu, H. X., Bao, M. Z., Wang, Y. B., Xu, R. J., Elliott, M. C. and Chen, D. F. (1998) The use of visual marker genes as cell-specific reporters of Agrobacterium. -mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) Euphytica 99,17–25.CrossRefGoogle Scholar
  39. 39.
    Johanson, P. F. and Laudoyer, O. (1995) Future uses in plant biotechnologies in plant improvement Monsanto’s work in wheat transformation. Available online:
  40. 40.
    ChawlaH. S., Cass, L. A. and Simmonds, J. A. (1999) Developmental and environmental regulation of anthocyanin pigmentation in wheat tissues transformed with anthocyanin regulatory genes. In Vitro Cell. Dev. Biol.-Plant 35,403–408.CrossRefGoogle Scholar
  41. 41.
    BowenB. (1992) Anthocyanin Genes as Visual Markers in Transformed Maize Tissues. Academic, Totowa.Google Scholar
  42. 42.
  43. 43.
    JohnsonA. A. T., Hibberd, J. M., Gay, C., Essah, P. A., Haseloff, J., Tester, M. and Guiderdoni, E. (2005) Spatial control of transgene expression in rice (Oryza sativa. L.) using the GAL4 enhancer trapping system Plant J. 41,779–789.CrossRefGoogle Scholar
  44. 44.
    WenckA., Pugieux, C., Turner, M., Dunn, M., Stacy, C., Tiozzo, A., Dunder, E., van Grinsven, E., Khan, R., Sigareva, M., Wang, W. C., Reed, J., Drayton, P., Oliver, D., Trafford, H., Legris, G., Rushton, H., Tayab, S., Launis, K., Chang, Y. F., Chen, D. F. and Melchers, L. (2003) Reef-coral proteins as visual, non-destructive reporters for plant transformation. Plant Cell Rep. 22,244–251.CrossRefGoogle Scholar
  45. 45.
    GoldsbroughA. P., Tong, Y. S. and Yoder, J. I. (2996) Lc as a non-destructive visual reporter and transposition excision marker gene for tomato. Plant J. 9,927–933.CrossRefGoogle Scholar
  46. 46.
    BilangR., Zhang, S., Leduc, N., Iglesias, V. A., Gisel, A., Simmonds, J., Potrykus, I. and Sautter, C. (1993) Transient gene expression in vegative shoot apical meristems of wheat after ballistic microtargeting. Plant J. 4,735–744.CrossRefGoogle Scholar
  47. 47.
    GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression (1992) Academic, San DiegoGoogle Scholar
  48. 48.
    HuC. Y., Chee, P. P., Chesney, R. H., Zhou, J. H., Miller, P. D. and Obrien, W. T. (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep. 9,1–5.CrossRefGoogle Scholar
  49. 49.
    HanschR., Koprek, T., Mendel, R. R. and Schulze, J. (1995) An improved protocol for eliminating endogenous beta-glucuronidase background in barley. Plant Sci. 105,63–69.CrossRefGoogle Scholar
  50. 50.
    Van der EyckenE., Terryn, N., Goeman, J. L., Carlens, G., Nerinckx, W., Claeyssens, M., Van der Eycken, J., Van Montagu, M., Brito-Arias, M. and Engler, G. (2000) Sudan-beta-D-glucuronides and their use for the histochemical localization of beta-glucuronidase activity in transgenic plants. Plant Cell Rep. 19,966–970.CrossRefGoogle Scholar
  51. 51.
    FlemingA. J., Manzara, T., Gruissem, W. and Kuhlemeier, C. (1996) Fluorescent imaging of GUS activity and RT-PCR analysis of gene expression in the shoot apical meristem. Plant J. 10,745–754.CrossRefGoogle Scholar
  52. 52.
    van der KrolA. R., van Poecke, R. M. P., Vorst, O. F. J., Voogt, C., van Leeuwen, W., Borst-Vrensen, T. W. M., Takatsuji, H. and van der Plas, L. H. W. (1999) Developmental and wound-, cold-, desiccation-, ultraviolet-B-stress-induced modulations in the expression of the petunia zinc finger transcription factor gene ZPT2–2. Plant Physiol. 121,1153–1162.CrossRefGoogle Scholar
  53. 53.
    de RuijterN. C. A., Verhees, J., van Leeuwen, W. and van der Krol, A. R. (2003) Evaluation and comparison of the GUS, LUC and GFP reporter system for gene expression studies in plants. Plant Biol. 5,103–115.CrossRefGoogle Scholar
  54. 54.
    van LeeuwenW., Ruttink, T., Borst-Vrenssen, A. W. M., van der Plas, L. H. W. and van der Krol, A. R. (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J. Exp. Bot. 52,949–959.CrossRefGoogle Scholar
  55. 55.
    BillintonN. and Knight, A. W. (2001) Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Anal. Biochem. 291,175–197.CrossRefGoogle Scholar
  56. 56.
    Abdel-AalE. S. M. and Hucl, P. (1999) A rapid method for quantifying total anthocyanins in blue aleurone and purple pericarp wheats. Cereal Chem. 76,350–354.CrossRefGoogle Scholar
  57. 57.
    DoshiK. M., Eudes, F., Laroche, A. and Gaudet, D. (2006) Transient embryo-specific expression of anthocyanin in wheat. In Vitro Cell. Dev. Biol.-Plant 42,432–438.CrossRefGoogle Scholar
  58. 58.
    Abdel-AalE. S. M., Young, J. C. and Rabalski, I. (2006) Anthocyanin composition in black, blue, pink, purple, and red cereal grains. J. Agr. Food Chem. 54,4696–4704.CrossRefGoogle Scholar
  59. 59.
    HaseloffJ., Siemering, K. R., Prasher, D. C. and Hodge, S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. P.N.A.S. USA 94,2122–2127.CrossRefGoogle Scholar
  60. 60.
    FarrellL. B. and Beachy, R. N. (1992) Gallagher, S. R., Review of the use of the GUS gene for analysis of secretory system, in GUS Protocols, (Academic, San Diego, pp. 127–133.ed.),Google Scholar
  61. 61.
    KavanaghT. A., Jefferson, R. A. and Bevan, M. W. (1088) Targeting a foreign protein to chloroplasts using fusions to the transit peptide of a chlorophyll A/B protein. Mol. Gen. Genet. 215,38–45.CrossRefGoogle Scholar
  62. 62.
    HuttlyA. K. and Baulcombe, D. C. (1989) A wheat alpha-AMY2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO J. 8,1907–1913.Google Scholar
  63. 63.
    StangelandB. and Salehian, Z. (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Mol. Biol. Rep. 20,107–114.CrossRefGoogle Scholar
  64. 64.
    RuzinS. E. (1999) Plant Microtechnique and Microscopy. OUP, New York.Google Scholar
  65. 65.
    eNotes, P. (2007) Compatibility of the Pierce BCA protein assay with Promega lysis buffers and lytic assay reagents. Available online:
  66. 66.
    ShawS. L. (2006) Imaging the live plant cell. Plant J. 45,573–598.CrossRefGoogle Scholar
  67. 67.

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centre for Crop Genetic Improvement, Department of Plant SciencesRothamsted ResearchHarpendenUK

Personalised recommendations