Advertisement

Selection of Transformed Plants

  • Huw D. Jones*
  • Caroline A. Sparks
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)

Abstract

The low frequency and randomness of transgene integration into host cells, combined with the significant challenges of recovering whole plants from those rare events, makes the use of selectable marker genes routine in plant transformation experiments. For research applications that are unlikely to be grown in the field, strong herbicide- or antibiotic resistance is commonly used. Here we use genes conferring resistance to glufosinate herbicides as an example of a selectable marker in wheat transformation by either Agrobacterium or biolistics.

Keywords

Selectable marker genes selection herbicide antibiotic Basta bar pat glufosinate ammonium G418 

Notes

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK.

References

  1. 1.
    Fang, Y. D., Akula, C. Altpeter, F. (2002) Agrobacterium-mediated barley (Hordeum vulgare L.) transformation using green fluorescent protein as a visual marker and sequence analysis of the T-DNA: barley genomic DNA junctions J. Plant Physiol. 159,1131–1138.CrossRefGoogle Scholar
  2. 2.
    Murray, F., Brettell, R., Matthews, P., Bishop, D. Jacobsen, J. (2004) Comparison of Agrobacterium-mediated transformation of four barley cultivars using the GFP and GUS reporter genes Plant Cell Rep. 22,397–402CrossRefGoogle Scholar
  3. 3.
    Jordan, M. C. (2000) Green fluorescent protein as a visual marker for wheat transformation. Plant Cell Rep. 19,1069–1075.CrossRefGoogle Scholar
  4. 4.
    McCormac, A. C., Wu, H. X., Bao, M. Z., Wang, Y. B., Xu, R. J., Elliott, M. C. Chen, D. F. (1998) The use of visual marker genes as cell-specific reporters of Agrobacterium-mediated T-DNA delivery to wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) Euphytica 99,17–25.CrossRefGoogle Scholar
  5. 5.
    Kaeppler, H. F., Menon, G. K., Skadsen, R. W., Nuutila, A. M. Carlson, A. R. (2000) Transgenic oat plants via visual selection of cells expressing green fluorescent protein. Plant Cell Rep. 19,661–666.CrossRefGoogle Scholar
  6. 6.
    Ahlandsberg, S., Sathish, P., Sun, C. X. Jansson, C. (1999) Green fluorescent protein as a reporter system in the transformation of barley cultivars. Physiol. Plantarum 107,194–200.CrossRefGoogle Scholar
  7. 7.
    Harwood, W. A., Ross, S. M., Bulley, S. M., Travella, S., Busch, B., Harden, J. Snape, J. W. (2002) Use of the firefly luciferase gene in a barley (Hordeum vulgare) transformation system Plant Cell Rep. 21,320–326.CrossRefGoogle Scholar
  8. 8.
    Huber, M., Hahn, R. Hess, D. (2002) High transformation frequencies obtained from a commercial wheat (Triticum aestivum L. cv. ‘Combi’) by microbombardment of immature embryos followed by GFP screening combined with PPT selection Mol. Breed. 10,19–30.CrossRefGoogle Scholar
  9. 9.
    Permingeat, H. R., Alvarez, M. L., Cervigni, G. D. L., Ravizzini, R. A. Vallejos, R. H. (2003) Stable wheat transformation obtained without selectable markers. Plant. Mol. Biol. 52,415–419.CrossRefGoogle Scholar
  10. 10,.
    SparksC. A. Jones, H. D. (2004) Transformation of wheat by biolistics, Curtis, I. P., in Transgenic Crops of the World – Essential Protocols,KluwerDordrecht, pp. 19–35.Google Scholar
  11. 11.
    Barcelo, P., Rasco-Gaunt, S., Thorpe, C. Lazzeri, P. A. (2001) Transformation and gene expression, Shewry, P. R., Lazzeri, P. A. Edwards, K. J., in Advances in Botanical Research Incorporating Advances in Plant Pathology 34, Academic, London, pp. 59–126.Google Scholar
  12. 12.
    Goodwin, J., Pastori, G., Davey, M. Jones, H. D. (2004) Selectable markers: antibiotic and herbicide resistance, Pena, L ed.), in Transgenic Plants: Methods and Protocols, (Humana, Totowa, NJ.Google Scholar
  13. 13.
    Pastori, G. M., Wilkinson, M. D., Steele, S. H., Sparks, C. A., Jones, H. D. Parry, M. A. J. (2001) Age-dependent transformation frequency in elite wheat varieties. J. Exp. Bot. 52,857–863.Google Scholar
  14. 14.
    Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P. Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment J. Exp. Bot. 52,865–874.Google Scholar
  15. 15.
    Rasco-Gaunt, S., Riley, A., Lazzeri, P. Barcelo, P. (1999) A facile method for screening for phosphinothricin (PPT)-resistant transgenic wheats. Mol. Breed. 5,255–262.CrossRefGoogle Scholar
  16. 16.
    Jones, H. D., Doherty, A. Wu, H. (2005) Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat Plant Methods 1, 5.CrossRefGoogle Scholar
  17. 17.
    Wu, H., Sparks, C., Amoah, B. Jones, H. D. (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat Plant Cell Rep. 21,659–668.Google Scholar
  18. 18.
    Iser, M., Fettig, S., Scheyhing, F., Viertel, K. Hess, D. (1999) Genotype-dependent stable genetic transformation in German spring wheat varieties selected for high regeneration potential. J. Plant. Physiol. 154,509–516.Google Scholar
  19. 19.
    Weeks, J. T., Anderson, O. D. Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) Plant. Physiol. 102,1077–1084.Google Scholar
  20. 20.
    Vasil, V., Castillo, A. M., Fromm, M. E. Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio-Technology 10,667–674.Google Scholar
  21. 21.
    Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M. Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5,285–297.CrossRefGoogle Scholar
  22. 22.
    Becker, D., Brettschneider, R. Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5,299–307.CrossRefGoogle Scholar
  23. 23.
    Ortiz, J. P. A., Reggiardo, M. I., Ravizzini, R. A., Altabe, S. G., Cervigni, G. D. L., Spitteler, M. A., Morata, M. M., Elias, F. E. Vallejos, R. H. (1996) Hygromycin resistance as an efficient selectable marker for wheat stable transformation. Plant Cell Rep. 15,877–881.CrossRefGoogle Scholar
  24. 24.
    Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D., Pajeau, M. E., Brown, S. M., Santino, C. G. Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15,159–163.Google Scholar
  25. 25.
    Weeks, J. T., Koshiyama, K. Y., Maier-Greiner, U., Schaeffner, T. Anderson, O. D. (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci. 40,1749–1754.CrossRefGoogle Scholar
  26. 26.
    Pastori, G. M., Huttly, A., West, J., Sparks, C., Pieters, A., Luna, C. M., Jones, H. D. Foyer, C. H. (2007) The maize Activator/Dissociation system is functional in hexaploid wheat through successive generations. Funct. Plant. Biol. 34,835–843.CrossRefGoogle Scholar
  27. 27.
    Gadaleta, A., Giancaspro, A., Blechl, A. Blanco, A. (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J. Cereal Sci. 43,31–37.CrossRefGoogle Scholar
  28. 28.
    Cheng, M., Fry, J. E., Pang, S. Z., Zhou, H. P., Hironaka, C. M., Duncan, D. R., Conner, T. W. Wan, Y. C. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens Plant Physiol. 115,971–980.Google Scholar
  29. 29.
    Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. Fry, J. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection Plant Cell Rep. 21,1010–1019.CrossRefGoogle Scholar
  30. 30.
    Cheng, M., Hu, T. C., Layton, J., Liu, C. N. Fry, J. E. (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat In Vitro Cell Develop. Biol. – Plant 39,595–604.CrossRefGoogle Scholar
  31. 31.
    Mitic, N., Nikolic, R., Ninkovic, S., Miljus-Djukic, J. Neskovic, M. (2004) Agrobacterium-mediated transformation and plant regeneration of Triticum aestivum L Biol. Plant. 48,179–184.CrossRefGoogle Scholar
  32. 32.
    Wu, H., Doherty, A. and Jones, H. D. (2008) Efficient and rapid Agrobacterium-mediated transformation of durum wheat (Triticum turgidum L. ssp durum) using additional virulence genes. Transgen. Res. 17, 425–436.CrossRefGoogle Scholar
  33. 33.
    Khanna, H. K. Daggard, G. E. (2003) Agrobacterium tumefaciens-mediated transformation of wheat using a superbinary vector and a polyamine-supplemented regeneration medium Plant Cell Rep. 21,429–436.Google Scholar
  34. 34.
    Reed, J., Privalle, L., Powell, M. L., Meghji, M., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, K., Kramer, C., Chang, Y. F., Hansen, G. Wright, M. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell. Develop. Biol. – Plant 37,127–132.CrossRefGoogle Scholar
  35. 35.
    Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H. Artim-Moore, L. (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker Plant Cell Rep. 20,429–436.CrossRefGoogle Scholar
  36. 36.
    Funatsuki, H., Kuroda, H., Kihara, M., Lazzeri, P. A., Muller, E., Lorz, H. Kishinami, I. (1995) Fertile transgenic barley generated by direct DNA transfer to protoplasts. Theor. Appl. Genet. 91,707–712.CrossRefGoogle Scholar
  37. 37.
    Nobre, J., Davey, M. R., Lazzeri, P. A. Cannell, M. E. (2000) Transformation of barley scutellum protoplasts: regeneration of fertile transgenic plants. Plant Cell Rep. 19,1000–1005.CrossRefGoogle Scholar
  38. 38.
    Brinch-Pedersen, H., Olsen, O., Knudsen, S. Holm, P. B. (1999) An evaluation of feed-back insensitive aspartate kinase as a selectable marker for barley (Hordeum vulgare L.) transformation Hereditas 131,239–245.CrossRefGoogle Scholar
  39. 39.
    Wan, Y. C. Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104,37–48.Google Scholar
  40. 40.
    Harwood, W. A., Ross, S. M., Cilento, P. Snape, J. W. (2000) The effect of DNA/gold particle preparation technique and particle bombardment device on the transformation of barley (Hordeum vulgare) Euphytica 111,67–76.CrossRefGoogle Scholar
  41. 41.
    Brinch-Pedersen, H., Galili, G., Knudsen, S. Holm, P. B. (1996) Engineering of the aspartate family biosynthetic pathway in barley (Hordeum vulgare L.) by transformation with heterologous genes encoding feed-back-insensitive aspartate kinase and dihydrodipicolinate synthase Plant Mol. Biol. 32,611–620.CrossRefGoogle Scholar
  42. 42.
    Stiff, C. M., Kilian, A., Zhou, H. P., Kudrna, D. A. Kleinhofs, A. (1995) Stable transformation of barley callus using biolistic ® particle bombardment and the phosphinothricin acetyltransferase (Bar) gene Plant Cell Tissue and Organ Cult. 40,243–248.CrossRefGoogle Scholar
  43. 43.
    Jahne, A., Becker, D., Brettschneider, R. Lorz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl. Genet. 89,525–533.CrossRefGoogle Scholar
  44. 44.
    Gurel, F., Gozukirmizi, N. (2000) Optimization of gene transfer into barley (Hordeum vulgare L.) mature embryos by tissue electroporation Plant Cell Rep. 19,787–791.CrossRefGoogle Scholar
  45. 45.
    Ritala, A., Aspegren, K., Kurten, U., Salmenkalliomarttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T. H. Enari, T. M. (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24,317–325.CrossRefGoogle Scholar
  46. 46.
    Koprek, T., McElroy, D., Louwerse, J., Williams-Carrier, R. Lemaux, P. G. (1999) Negative selection systems for transgenic barley (Hordeum vulgare L.): comparison of bacterial codA- and cytochrome P450 gene-mediated selection Plant J. 19,719–726.CrossRefGoogle Scholar
  47. 47.
    Hagio, T., Hirabayashi, T., Machii, H. Tomotsune, H. (1995) Production of fertile transgenic barley (Hordeum vulgare L.) plant using the hygromycin-resistance marker Plant Cell Rep. 14,329–334.CrossRefGoogle Scholar
  48. 48.
    Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M. B., Thornton, S. Brettell, R. (1997) Agrobacterium tumefaciens-mediated barley transformation Plant J. 11,1369–1376.CrossRefGoogle Scholar
  49. 49.
    Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W. Harwood, W. A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques Plant Cell Rep. 23,780–789.CrossRefGoogle Scholar
  50. 50.
    Shrawat, A. K., Becker, D. Lorz, H. (2007) Agrobacterium tumefaciens-mediated genetic transformation of barley (Hordeum vulgare L.) Plant Sci. 172,281–290.CrossRefGoogle Scholar
  51. 51.
    Kumlehn, J., Serazetdinova, L., Hensel, G., Becker, D. Loerz, H. (2006) Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen cultures with Agrobacterium tumefaciens Plant Biotech. J. 4,251–261.CrossRefGoogle Scholar
  52. 52.
    Wang, M. B., Abbott, D. C., Upadhyaya, N. M., Jacobsen, J. V. Waterhouse, P. M. (2001) Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes Aust. J. Plant Physiol. 28,149–156.Google Scholar
  53. 53.
    Torbert, K. A., Rines, H. W. Somers, D. A. (1995) Use of paromomycin as a selective agent for oat transformation. Plant Cell Rep. 14,635–640.CrossRefGoogle Scholar
  54. 54.
    Torbert, K. A., Rines, H. W. Somers, D. A. (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 38,226–231.CrossRefGoogle Scholar
  55. 55.
    Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F. Bushnell, W. R. (1992) Fertile transgenic oat plants. Bio-Technology 10,1589–1594.Google Scholar
  56. 56.
    Maqbool, S. B., Zhong, H., El-Maghraby, Y., Ahmad, A., Chai, B., Wang, W., Sabzikar, R. Sticklen, M. B. (2002) Competence of oat (Avena sativa L.) shoot apical meristems for integrative transformation, inherited expression, and osmotic tolerance of transgenic lines containing hva1 Theor. Appl. Genet. 105,201–208.CrossRefGoogle Scholar
  57. 57.
    Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P. Lemaux, P. G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings Plant Cell Rep. 18,959–966.CrossRefGoogle Scholar
  58. 58.
    Cho, M.-J., Jiang, W. Lemaux, P. G. (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci. 148,9–17.CrossRefGoogle Scholar
  59. 59.
    Christensen, A. H. Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgen. Res. 5,213–218.CrossRefGoogle Scholar
  60. 60.
    Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio-Technology 8,833–839.Google Scholar
  61. 61.
    Xiang, C. B., Han, P., Lutziger, I., Wang, K. Oliver, D. J. (1999) A mini binary vector series for plant transformation. Plant Mol. Biol. 40,711–717.CrossRefGoogle Scholar
  62. 62.
    Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation Plant Mol. Biol. 42,819–832.CrossRefGoogle Scholar
  63. 63.
    Stacey, J. Isaac, P. (1994) Isolation of DNA from plants, Isaac, P., in Methods in Molecular Biology – Protocols for Nucleic Acid Analysis by Nonradioactive Probes 28, Humana, Totowa, pp. 9–15.CrossRefGoogle Scholar
  64. 64.
    Rasco-Gaunt, S., Riley, A., Barcelo, P. Lazzeri, P. A. (1999) Analysis of particle bombardment parameters to optimize DNA delivery into wheat tissues. Plant Cell Rep. 19,118–127.CrossRefGoogle Scholar
  65. 65.
    Barro, F., Cannell, M. E., Lazzeri, P. A. Barcelo, P. (1998) The influence of auxins on transformation of wheat and tritordeum and analysis of transgene integration patterns in transformants. Theor. Appl. Genet. 97,684–695.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Huw D. Jones*
    • 1
  • Caroline A. Sparks
    • 1
  1. 1.Centre for Crop Genetic ImprovementDepartment of Plant Sciences, Rothamsted ResearchHarpendenUK

Personalised recommendations