Promoter Sequences for Defining Transgene Expression

  • Huw D. Jones*
  • Caroline A. Sparks
Protocol
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)

Abstract

The design of reverse genetic experiments that utilize transgenic approaches often requires transgenes to be expressed in a predefined pattern and there is limited information regarding the gene expression profile for specific promoters. It is important that expression patterns are predetermined in the specific genotype targeted for transformation because the same promoter–transgene construct can produce different expression patterns in different host species. This chapter compares constitutive, targeted, or inducible promoters that have been characterized in specific cereal species.

Key Words:

Promoter regulatory elements transgene expression constitutive tissue specific inducible reporter genes 

Notes

Acknowledgements

Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council (BBSRC) of the UK.

References

  1. 1.
    Chakalova, L., Debrand, E., Mitchell, J. A., Osborne, C. S. and Fraser, P. (2005) Replication and transcription: shaping the landscape of the genome.Nat. Rev. Genet. 6,669–677.CrossRefGoogle Scholar
  2. 2.
    Lomvardas, S., Barnea, G., Pisapia, D. J., Mendelsohn, M., Kirkland, J. and Axel, R. (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126,403–413.CrossRefGoogle Scholar
  3. 3.
    Salgueiro, S., Pignocchi, C. and Parry, M. A. J. (2000) Intron-mediated gusA expression in tritordeum and wheat resulting from particle bombardment.Plant Mol. Biol. 42,615–622.CrossRefGoogle Scholar
  4. 4.
    Vain, P., Finer, K. R., Engler, D. E., Pratt, R. C. and Finer, J. J. (1996) Intron-mediated enhancement of gene expression in maize (Zea mays L) and bluegrass (Poa pratensis L).Plant Cell Rep. 15,489–494.CrossRefGoogle Scholar
  5. 5.
    Rose, A. B. and Beliakoff, J. A. (2000) Intron-mediated enhancement of gene expression independent of unique intron sequences and splicing.Plant Physiol. 122,535–542.CrossRefGoogle Scholar
  6. 6.
    Norris, S. R., Meyer, S. E. and Callis, J. (1993) The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression.Plant Mol. Biol. 21,895–906.CrossRefGoogle Scholar
  7. 7.
    Fromm, M. E., Morrish, F., Armstrong, C., Williams, R., Thomas, J. and Klein, T. M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants.Bio-Technology 8,833–839.Google Scholar
  8. 8.
    Somers, D. A., Rines, H. W., Gu, W., Kaeppler, H. F. and Bushnell, W. R. (1992) Fertile, transgenic oat plants.Bio-Technology 10,1589–1594.Google Scholar
  9. 9.
    Vasil, V., Castillo, A. M., Fromm, M. E. and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus.Bio-Technology 10,667–674.Google Scholar
  10. 10.
    Christensen, A. H. and Quail, P. H. (1996) Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants.Transgen. Res. 5,213–218.CrossRefGoogle Scholar
  11. 11.
    Christensen, A. H., Sharrock, R. A. and Quail, P. H. (1992). Maize polyubiquitin genes – structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation.Plant Mol. Biol. 18,675–689.CrossRefGoogle Scholar
  12. 12.
    Perret, S. J., Valentine, J., Leggett, J. M. and Morris, P. (2003) Integration, expression and inheritance of transgenes in hexaploid oat (Avena sativa L.).J. Plant Physiol. 160,931–943.CrossRefGoogle Scholar
  13. 13.
    Meng, L., Bregitzer, P., Zhang, S. B. and Lemaux, P. G. (2003) Methylation of the exon/intron region in the Ubi1 promoter complex correlates with transgene silencing in barley.Plant Mol. Biol. 53,327–340.CrossRefGoogle Scholar
  14. 14.
    Rooke, L., Byrne, D. and Salgueiro, S. (2000) Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat.Ann. Appl. Biol. 136,167–172.CrossRefGoogle Scholar
  15. 15.
    Cho, M. J., Jiang, W. and Lemaux, P. G. (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures.Plant Sci. 148,9–17.CrossRefGoogle Scholar
  16. 16.
    McElroy, D., Zhang, W. G., Cao, J. and Wu, R. (1990) Isolation of an efficient actin promoter for use in rice transformation.Plant Cell 2,163–171.CrossRefGoogle Scholar
  17. 17.
    Becker, D., Brettschneider, R. and Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.Plant J. 5,299–307.CrossRefGoogle Scholar
  18. 18.
    Gless, C., Lorz, H. and Jahne-Gartner, A. (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments.J. Plant Physiol. 152,151–157.Google Scholar
  19. 19.
    Cho, M. J., Ha, C. D. and Lemaux, P. G. (2000) Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues.Plant Cell Rep. 19,1084–1089.CrossRefGoogle Scholar
  20. 20.
    Cho, M. J., Choi, H. W., Okamoto, D., Zhang, S. and Lemaux, P. G. (2003) Expression of green fluorescent protein and its inheritance in transgenic oat plants generated from shoot meristematic cultures.Plant Cell Rep. 21,467–474.Google Scholar
  21. 21.
    Jordan, M. C. (2000) Green fluorescent protein as a visual marker for wheat transformation.Plant Cell Rep. 19,1069–1075.CrossRefGoogle Scholar
  22. 22.
    Cho, M. J., Choi, H. W., Jiang, W., Ha, C. D. and Lemaux, P. G. (2002) Endosperm-specific expression of green fluorescent protein driven by the hordein promoter is stably inherited in transgenic barley (Hordeum vulgare) plants.Physiol. Plant. 115,144–154.CrossRefGoogle Scholar
  23. 23.
    Datla, R. S. S., Hammerlindl, J. K., Pelcher, L. E., Crosby, W. L. and Selvaraj, G. (1991) A bifunctional fusion between beta-glucoronidase and neomycin phosphotransferase – a broad-spectrum marker enzyme for plants.Gene 101,239–246.CrossRefGoogle Scholar
  24. 24.
    Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M. and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs.Plant J. 5,285–297.CrossRefGoogle Scholar
  25. 25.
    Rasco-Gaunt, S., Liu, D., Li, C. P., Doherty, A., Hagemann, K., Riley, A., Thompson, T., Brunkan, C., Mitchell, M., Lowe, K., Krebbers, E., Lazzeri, P., Jayne, S. and Rice, D. (2003) Characterisation of the expression of a novel constitutive maize promoter in transgenic wheat and maize.Plant Cell Rep. 21,569–576.Google Scholar
  26. 26.
    Lamacchia, C., Shewry, P. R., Di Fonzo, N., Forsyth, J. L., Harris, N., Lazzeri, P. A., Napier, J. A., Halford, N. G. and Barcelo, P. (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed.J. Exp. Bot. 52,243–250.CrossRefGoogle Scholar
  27. 27.
    Stoger, E., Williams, S., Keen, D. and Christou, P. (1999) Constitutive versus seed specific expression in transgenic wheat: temporal and spatial control.Transgen. Res. 8,73–82.CrossRefGoogle Scholar
  28. 28.
    Pistón, F., León, E., Lazzeri, P. and Barro, F. (2007) Isolation of two storage protein promoters from Hordeum chilense and characterization of their expression patterns in transgenic wheat.Euphytica , 162371–379, online 10.1007/s10681-007-9530-3.CrossRefGoogle Scholar
  29. 29.
    Sorensen, M. B., Muller, M., Skerritt, J. and Simpson, D. (1996) Hordein promoter methylation and transcriptional activity in wild type and mutant barley endosperm.Mol. Gen. Genet. 250,750–760.CrossRefGoogle Scholar
  30. 30.
    Cho, M. J., Choi, H. W., Buchanan, B. B. and Lemaux, P. G. (1999) Inheritance of tissue-specific expression of barley hordein promoter-uidA fusions in transgenic barley plants.Theor. Appl. Genet. 98,1253–1262.CrossRefGoogle Scholar
  31. 31.
    Wiley, P. R., Tosi, P., Evrard, A., Lovegrove, A., Jones, H. D. and Shewry, P. R. (2007) Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain.Plant Mol. Biol. 64,125–136.CrossRefGoogle Scholar
  32. 32.
    Digeon, J. F., Guiderdoni, E., Alary, R., Michaux-Ferriere, N., Joudrier, P. and Gautier, M. F. (1999) Cloning of a wheat puroindoline gene promoter by IPCR and analysis of promoter regions required for tissue-specific expression in transgenic rice seeds.Plant Mol. Biol. 39,1101–1112.CrossRefGoogle Scholar
  33. 33.
    Stone, M. C. (2003) Understanding the role of gibberellin in the developmental physiology of wheat using a transgenic approach. PhD thesis; Plant Sciences Department, Bristol University, Bristol, pp. 231.Google Scholar
  34. 34.
    Huttly, A. K. and Baulcombe, D. C. (1989) A wheat alpha-AMY2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts.EMBO J. 8,1907–1913.Google Scholar
  35. 35.
    Furtado, A., Henry, R., Scott, K. and Meech, S. (2003) The promoter of the asi gene directs expression in the maternal tissues of the seed in transgenic barley.Plant Mol. Biol. 52,787–799.CrossRefGoogle Scholar
  36. 36.
    Furtado, A. and Henry, R. J. (2005) The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice.Plant Biotech. J. 3,421–434.CrossRefGoogle Scholar
  37. 37.
    Vickers, C. E., Xue, G. P. and Gresshoff, P. M. (2006) A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter.Plant Mol. Biol. 62,195–214.CrossRefGoogle Scholar
  38. 38.
    Somleva, M. N. and Blechl, A. E. (2005) The barley Lem1 gene promoter drives expression specifically in outer floret organs at anthesis in transgenic wheat.Cereal Res. Comm. 33,665–671.CrossRefGoogle Scholar
  39. 39.
    Abebe, T., Skadsen, R. W. and Kaeppler, H. F. (2005) A proximal upstream sequence controls tissue-specific expression of Lem2, a salicylate-inducible barley lectin-like gene.Planta 221,170–183.CrossRefGoogle Scholar
  40. 40.
    Abebe, T., Skadsen, R., Patel, M. and Kaeppler, H. (2006) The Lem2 gene promoter of barley directs cell- and development-specific expression of gfp in transgenic plants.Plant Biotechnol. J. 4,35–44.CrossRefGoogle Scholar
  41. 41.
    Thorneycroft, D., Hosein, F., Thangavelu, M., Clark, J., Vizir, I., Burrell, M. M. and Ainsworth, C. (2003) Characterization of a gene from chromosome 1B encoding the large subunit of ADP glucose pyrophosphorylase from wheat: evolutionary divergence and differential expression of Agp2 genes between leaves and developing endosperm.Plant Biotechnol. J. 1,259–270.CrossRefGoogle Scholar
  42. 42.
    Chrimes, D., Rogers, H. J., Francis, D., Jones, H. D. and Ainsworth, C. (2005) Expression of fission yeast cdc25 driven by the wheat ADP-glucose pyrophosphorylase large subunit promoter reduces pollen viability and prevents transmission of the transgene in wheat.New Phytol. 166,185–192.CrossRefGoogle Scholar
  43. 43.
    Tzafrir, I., Torbert, K. A., Lockhart, B. E. L., Somers, D. A. and Olszewski, N. E. (1998) The sugarcane bacilliform badnavirus promoter is active in both monocots and dicots.Plant Mol. Biol. 38,347–356.CrossRefGoogle Scholar
  44. 44.
    Al-Saady, N. A., Torbert, K. A., Smith, L., Makarevitch, I., Baldridge, G., Zeyen, R. J., Muehlbauer, G. J., Olszewski, N. E., and Somers, D. A. (2004) Tissue specificity of the sugarcane bacilliform virus promoter in oat, barley and wheat.Mol. Breed. 14,331–338.CrossRefGoogle Scholar
  45. 45.
    Medberry, S. L. and Olszewski, N. E. (1993) Identification of cis elements involved in commelina yellow mottle virus promoter activity.Plant J. 3,619–626.CrossRefGoogle Scholar
  46. 46.
    Torbert, K. A., Gopalraj, M., Medberry, S. L., Olszewski, N. E. and Somers, D. A. (1998) Expression of the Commelina yellow mottle virus promoter in transgenic oat.Plant Cell Rep. 17,284–287.CrossRefGoogle Scholar
  47. 47.
    Gomez, M., Beltran, J. P. and Canas, L. (2004) The pea END1 promoter drives anther-specific gene expression in different plant species.Planta 219,967–981.CrossRefGoogle Scholar
  48. 48.
    Pistón, F., García, C., de la Viña, G., Beltran, J., Cañas, L. and Barro, F. (2007) The pea PsEND1 promoter drives the expression of GUS in transgenic wheat at the binucleate microspore stage and during pollen tube development.Mol. Breed., 21401–405, online doi 10.1007/s11032–007–9133–7.CrossRefGoogle Scholar
  49. 49.
    Odell, J. T., Nagy, F. and Chua, N. H. (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus-35s promoter.Nature 313,810–812.CrossRefGoogle Scholar
  50. 50.
    Bevan, M. W., Mason, S. E. and Goelet, P. (1985) Expression of tobacco mosaic-virus coat protein by a cauliflower mosaic-virus promoter in plants transformed by Agrobacterium.EMBO J. 4,1921–1926.Google Scholar
  51. 51.
    Battraw, M. J. and Hall, T. C. (1990) Histochemical analysis of CaMV 35S promoter-beta-glucuronidase gene-expression in transgenic rice plants.Plant Mol. Biol. 15,527–538.CrossRefGoogle Scholar
  52. 52.
    Li, Z. Y., Upadhyaya, N. M., Meena, S., Gibbs, A. J. and Waterhouse, P. M. (1997) Comparison of promoters and selectable marker genes for use in Indica rice transformation.Mol. Breed. 3,1–14.CrossRefGoogle Scholar
  53. 53.
    Terada, R. and Shimamoto, K. (1990) Expression of CaMV 35S-Gus gene in transgenic rice plants.Mol. Gen. Genet. 220,389–392.CrossRefGoogle Scholar
  54. 54.
    Chen, W. P., Chen, P. D., Liu, D. J., Kynast, R., Friebe, B., Velazhahan, R., Muthukrishnan, S. and Gill, B. S. (1999) Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene.Theor. Appl. Genet. 99,755–760.CrossRefGoogle Scholar
  55. 55.
    Chen, W. P., Gu, X., Liang, G. H., Muthukrishnan, S., Chen, P. D., Liu, D. J. and Gill, B. S. (1998) Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker.Theor. Appl. Genet. 97,1296–1306.CrossRefGoogle Scholar
  56. 56.
    Kloti, A., Henrich, C., Bieri, S., He, X. Y., Chen, G., Burkhardt, P. K., Wunn, J., Lucca, P., Hohn, T., Potrykus, I. and Futterer, J. (1999) Upstream and downstream sequence elements determine the specificity of the rice tungro bacilliform virus promoter and influence RNA production after transcription initiation.Plant Mol. Biol. 40,249–266.CrossRefGoogle Scholar
  57. 57.
    Petruccelli, S., Dai, S., Carcamo, R., Yin, Y. H., Chen, S. Y. and Beachy, R. N. (2001) Transcription factor RF2a alters expression of the rice tungro bacilliform virus promoter in transgenic tobacco plants.P.N.A.S. USA 98,7635–7640.CrossRefGoogle Scholar
  58. 58.
    Bhattacharyya-Pakrasi, M., Peng, J. Y., Elmer, J. S., Laco, G., Shen, P., Kaniewska, M. B., Kononowicz, H., Wen, F. J., Hodges, T. K. and Beachy, R. N. (1993) Specificity of a promoter from the rice tungro bacilliform virus for expression in phloem tissues.Plant J. 4,71–79.CrossRefGoogle Scholar
  59. 59.
    Mathur, S. and Dasgupta, I. (2007) Downstream promoter sequence of an Indian isolate of rice tungro bacilliform virus alters tissue-specific expression in host rice and acts differentially in heterologous system.Plant Mol. Biol. 65,259–275.CrossRefGoogle Scholar
  60. 60.
    Yin, Y. H., Chen, L. L. and Beachy, R. (1997) Promoter elements required for phloem-specific gene expression from the RTBV promoter in rice.Plant J. 12,1179–1188.CrossRefGoogle Scholar
  61. 61.
    Yin, Y. H. and Beachy, R. N. (1995) The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in rice (Oryza sativa L).Plant J. 7,969–980.CrossRefGoogle Scholar
  62. 62.
    Stavolone, L., Kononova, M., Pauli, S., Ragozzino, A., de Haan, P., Milligan, S., Lawton, K. and Hohn, T. (2003) Cestrum yellow leaf curling virus (CmYLCV) promoter: a new strong constitutive promoter for heterologous gene expression in a wide variety of crops.Plant Mol. Biol. 53,703–713.CrossRefGoogle Scholar
  63. 63.
    McElroy, D., Blowers, A. D., Jenes, B. and Wu, R. (1991) Construction of expression vectors based on the rice Actin-1 (Act1) 5′ region for use in monocot transformation.Mol. Gen. Genet. 231,150–160.CrossRefGoogle Scholar
  64. 64.
    Takimoto, I., Christensen, A. H., Quail, P. H., Uchimiya, H. and Toki, S. (1994) Non-systemic expression of a stress-responsive maize polyubiquitin gene (Ubi-1) in transgenic rice plants.Plant Mol. Biol. 26,1007–1012.CrossRefGoogle Scholar
  65. 65.
    Cornejo, M. J., Luth, D., Blankenship, K. M., Anderson, O. D. and Blechl, A. E. (1993) Activity of a maize ubiquitin promoter in transgenic rice.Plant Mol. Biol. 23,567–581.CrossRefGoogle Scholar
  66. 66.
    Streatfield, S. J., Magallanes-Lundback, M. E., Beifuss, K. K., Brooks, C. A., Harkey, R. L., Love, R. T., Bray, J., Howard, J. A., Jilka, J. M. and Hood, E. E. (2004) Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics.Transgen. Res. 13,299–312.CrossRefGoogle Scholar
  67. 67.
    Liu, D. W., Oard, S. V. and Oard, J. H. (2003) High transgene expression levels in sugarcane (Saccharum officinarum L.) driven by the rice ubiquitin promoter RUBQ2.Plant Sci. 165,743–750.CrossRefGoogle Scholar
  68. 68.
    Sivamani, E. and Qu, R. (2004) Polyubiquitin RUBI3 promoter and 5′ regulatory sequences. Patent WO2004US15286 20040514.Google Scholar
  69. 69.
    Wei, H. R., Wang, M. L., Moore, P. H. and Albert, H. H. (2003) Comparative expression analysis of two sugarcane polyubiquitin promoters and flanking sequences in transgenic plants.J. Plant Physiol. 160,1241–1251.CrossRefGoogle Scholar
  70. 70.
    Lindroth, A. M., Gronroos, R., Clapham, D., Svensson, J. and von Arnold, S. (1999) Ubiquitous and tissue-specific gus expression in transgenic roots conferred by six different promoters in one coniferous and three angiosperm species.Plant Cell Rep. 18,820–828.CrossRefGoogle Scholar
  71. 71.
    Zhang, W. G., McElroy, D. and Wu, R. (1991) Analysis of rice Act1 5′ region activity in transgenic rice plants.Plant Cell 3,1155–1165.CrossRefGoogle Scholar
  72. 72.
    Jang, I. C., Choi, W. B., Lee, K. H., Song, S. I., Nahm, B. H. and Kim, J. K. (2002) High-level and ubiquitous expression of the rice cytochrome c gene OsCc1 and its promoter activity in transgenic plants provides a useful promoter for transgenesis of monocots.Plant Physiol. 129,1473–1481.CrossRefGoogle Scholar
  73. 73.
    Schunmann, P. H. D., Surin, B. and Waterhouse, P. M. (2003) A suite of novel promoters and terminators for plant biotechnology – II.The pPLEX series for use in monocots. Funct. Plant Biol. 30,453–460.CrossRefGoogle Scholar
  74. 74.
    Shewry, P. R. and Jones, H. D. (2007) Pomeranz, Y., ed.), Genetic improvement of wheat quality, in Wheat: Chemistry and Technology (AACC Monograph Series), (American Association of Cereal ChemistsUSA, pp. 562.Google Scholar
  75. 75.
    Padidam, M. (2003) Chemically regulated gene expression in plants.Current Opin. Plant Biol. 6,169–177.CrossRefGoogle Scholar
  76. 76.
    Ward, E. R., Ryals, J. A. and Miflin, B. J. (1993) Chemical regulation of transgene expression in plants.Plant Mol. Biol. 22,361–366.CrossRefGoogle Scholar
  77. 77.
    Gatz, C. and Lenk, I. (1998) Promoters that respond to chemical inducers.Trends Plant Sci. 3,352–358.CrossRefGoogle Scholar
  78. 78.
    Felenbok, B. (1991) The ethanol utilization regulon of Aspergillus nidulans – the ALCA-ALCR system as a tool for the expression of recombinant proteins.J. Biotechnol. 17,11–17.CrossRefGoogle Scholar
  79. 79.
    Roslan, H. A., Salter, M. G., Wood, C. D., White, M. R. H., Croft, K. P., Robson, F., Coupland, G., Doonan, J., Laufs, P., Tomsett, A. B. and Caddick, M. X. (2001) Characterization of the ethanol-inducible alc gene-expression system in Arabidopsis thaliana.Plant J. 28,225–235.CrossRefGoogle Scholar
  80. 80.
    Caddick, M. X., Greenland, A. J., Jepson, I., Krause, K. P., Qu, N., Riddell, K. V., Salter, M. G., Schuch, W., Sonnewald, U. and Tomsett, A. B. (1998) An ethanol inducible gene switch for plants used to manipulate carbon metabolism.Nat. Biotech. 16,177–180.CrossRefGoogle Scholar
  81. 81.
    Salter, M. G., Paine, J. A., Riddell, K. V., Jepson, I., Greenland, A. J., Caddick, M. X. and Tomsett, A. B. (1998) Characterisation of the ethanol-inducible alc gene expression system for transgenic plants.Plant J. 16,127–132.CrossRefGoogle Scholar
  82. 82.
    Milligan, A. S., Daly, A., Parry, M. A. J., Lazzeri, P. A. and Jepson, I. (2001) The expression of a maize glutathione S-transferase gene in transgenic wheat confers herbicide tolerance, both in planta and in vitro.Mol. Breed. 7,301–315.CrossRefGoogle Scholar
  83. 83.
    DeVeylder, L., Van Montagu, M. and Inze, D. (1997) Herbicide safener-inducible gene expression in Arabidopsis thaliana.Plant Cell Physiol. 38,568–577.Google Scholar
  84. 84.
    Liu, H. K., Yang, C. and Wei, Z. M. (2005) Heat shock-regulated site-specific excision of extraneous DNA in transgenic plants.Plant Sci. 168,997–1003.CrossRefGoogle Scholar
  85. 85.
    Gulli, M., Rampino, P., Lupotto, E., Marmiroli, N. and Perrotta, C. (2005) The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize.J. Cereal Sci. 42,25–31.CrossRefGoogle Scholar
  86. 86.
    Raho, G., Lupotto, E., Dellatorre, A., Hartings, H., Perrotta, C. and Marmiroli, N. (1995) Functional analysis of the temperature-dependent expression of the barley Hvhsp17 gene promoter in monocot and dicot cell systems.Plant Sci. 106,63–69.CrossRefGoogle Scholar
  87. 87.
    Raho, G., Lupotto, E., Hartings, H., DellaTorre, A. P., Perrotta, C. and Marmiroli, N. (1996) Tissue-specific expression and environmental regulation of the barley Hvhsp17 gene promoter in transgenic tobacco plants.J. Exp. Bot. 47,1587–1594.CrossRefGoogle Scholar
  88. 88.
    Devoto, A., Leckie, F., Lupotto, E., Cervone, F. and De Lorenzo, G. (1998) The promoter of a gene encoding a polygalacturonase-inhibiting protein of Phaseolus vulgaris L.is activated by wounding but not by elicitors or pathogen infection. Planta 205,165–174.Google Scholar
  89. 89.
    Weinmann, P., Gossen, M., Hillen, W., Bujard, H. and Gatz, C. (1994) A chimeric transactivator allows tetracycline-responsive gene expression in whole plants.Plant J. 5,559–569.CrossRefGoogle Scholar
  90. 90.
    Love, J., Scott, A. C. and Thompson, W. F. (2000) Stringent control of transgene expression in Arabidopsis thaliana using the Top10 promoter system.Plant J. 21,579–588.CrossRefGoogle Scholar
  91. 91.
    Bohner, S. and Gatz, C. (2001) Characterisation of novel target promoters for the dexamethasone-inducible/tetracycline-repressible regulator TGV using luciferase and isopentenyl transferase as sensitive reporter genes.Mol. Gen. Genet. 264,860–870.CrossRefGoogle Scholar
  92. 92.
    Roder, F. T., Schmulling, T. and Gatz, C. (1994) Efficiency of the tetracycline-dependent gene expression system - complete suppression and efficient induction of the ROLB phenotype in transgenic plants.Mol. Gen. Genet. 243,32–38.CrossRefGoogle Scholar
  93. 93.
    Gatz, C., Frohberg, C. and Wendenburg, R. (1992) Stringent repression and homogeneous de-repression by tetracycline of a modified CAMV 35S promoter in intact transgenic tobacco plants.Plant J. 2,397–404.Google Scholar
  94. 94.
    Frova, C. (2003) The plant glutathione transferase gene family: genomic structure, functions, expression and evolution.Physiol. Plant. 119,469–479.CrossRefGoogle Scholar
  95. 95.
    Martinez, A., Sparks, C., Drayton, P., Thompson, J., Greenland, A. and Jepson, I. (1999) Creation of ecdysone receptor chimeras in plants for controlled regulation of gene expression.Mol. Gen. Genet. 261,546–552.CrossRefGoogle Scholar
  96. 96.
    Martinez, A., Sparks, C., Hart, C. A., Thompson, J. and Jepson, I. (1999) Ecdysone agonist inducible transcription in transgenic tobacco plants.Plant J. 19,97–106.CrossRefGoogle Scholar
  97. 97.
    Padidam, M., Gore, M., Lu, D. L. and Smirnova, O. (2003) Chemical-inducible, ecdysone receptor-based gene expression system for plants.Transgen. Res. 12,101–109.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Huw D. Jones*
    • 1
  • Caroline A. Sparks
    • 1
  1. 1.Centre for Crop Genetic Improvement, Department of Plant SciencesRothamsted Research, HarpendenUK

Personalised recommendations