Transgenic Wheat, Barley and Oats: Production and Characterization

  • Paul A. Lazzeri*
  • Huw D. JonesEmail author
Part of the Methods in Molecular Biology™ book series (MIMB, volume 478)


Ever since the first developments in plant transformation technology using model plant species in the early 1980s, there has been a body of plant science research devoted to adapting these techniques to the transformation of crop plants. For some crop species progress was relatively rapid, but in other crop groups such as the small grain cereals, which were not readily amenable to culture in vitro and were not natural hosts to Agrobacterium, it has taken nearly two decades to develop reliable and robust transformation methods.

In the following chapters of this book, transformation procedures for small grain cereals are presented, together with methods for gene and protein expression and the characterization of transgenic plants. In this introductory chapter we try to put these later chapters into context, giving an overview of the development of transformation technology for small grain cereals, discussing some of the pros and cons of the techniques and what limitations still exist.


Small grain cereals transformation biolistics Agrobacterium tissue culture regeneration selection promoters reporter genes 


  1. 1.
    Klein, T. M., Wolf, E. D., Wu, R. and Sanford, J. C. (1987) High-velocity microprojectiles for delivering nucleic-acids into living cells. Nature 327,70–73.CrossRefGoogle Scholar
  2. 2.
    Gordonkamm, W. J., Spencer, T. M., Mangano, M. L., Adams, T. R., Daines, R. J., Start, W. G., Obrien, J. V., Chambers, S. A., Adams, W. R., Willetts, N. G., Rice, T. B., Mackey, C. J., Krueger, R. W., Kausch, A. P. and Lemaux, P. G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2,603–618.CrossRefGoogle Scholar
  3. 3.
    Gheysen, G., Angenon, G. and Van Montagu, M. (1998) Agrobacterium-mediated plant transformation: a scientifically intriguing story with significant applications in transgenic plant researchLindsey, K., in Transgenic Plant ResearchHarwood Academic, The Netherlands, pp. 1–33.Google Scholar
  4. 4.
    Potrykus, I. (1990) Gene transfer to cereals – an assessment. Bio-Technology 8,535–542.Google Scholar
  5. 5.
    Lazzeri, P. A. and Shewry, P. R. (1993) Biotechnology of cereals. Biotechnol Genetic Eng. Rev 11,79–146.Google Scholar
  6. 6.
    Barcelo, P. and Lazzeri, P. (1998) Lindsey, K., Direct gene transfer: chemical, electrical and physical methods, in Transgenic Plant Research,Harwood Academic, The Netherlands, pp. 35–55.Google Scholar
  7. 7.
    Finer, J. J., Finer, K. R. and Ponappa, T. (1999) Particle bombardment mediated transformation, Hammond, J., Mcgarvey, P., and Yusibov, V., in Plant BiotechnologyVol240Springer-Verlag, New York, pp. 59–80.Google Scholar
  8. 8.
    Kikkert, J. R. (1993) The Biolistic(R) Pds-1000 He Device. Plant Cell Tissue and Organ Cult. 33,221–226.CrossRefGoogle Scholar
  9. 9.
    Mendel, R. R., Muller, B., Schulze, J., Kolesnikov, V. and Zelenin, A. (1989) Delivery of foreign genes to intact barley cells by high-velocity microprojectiles. Theor. ApplGenet 78,31–34.CrossRefGoogle Scholar
  10. 10.
    Kartha, K. K., Chibbar, R. N., Georges, F., Leung, N., Caswell, K., Kendall, E. and Qureshi, J. (1989) Transient expression of chloramphenicol acetyltransferase (cat) gene in barley cell-cultures and immature embryos through microprojectile bombardment. Plant Cell Rep. 8,429–432.CrossRefGoogle Scholar
  11. 11.
    Vasil, V., Brown, S. M., Re, D., Fromm, M. E. and Vasil, I. K. (1991) Stably transformed callus lines from microprojectile bombardment of cell-suspension cultures of wheat. Bio-Technology 9,743–747.Google Scholar
  12. 12.
    Vasil, V., Castillo, A. M., Fromm, M. E. and Vasil, I. K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio-Technology 10,667–674.Google Scholar
  13. 13.
    Nehra, N. S., Chibbar, R. N., Leung, N., Caswell, K., Mallard, C., Steinhauer, L., Baga, M. and Kartha, K. K. (1994) Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5,285–297.CrossRefGoogle Scholar
  14. 14.
    Weeks, J. T., Anderson, O. D. and Blechl, A. E. (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum) Plant Physiol. 102,1077–1084.Google Scholar
  15. 15.
    Becker, D., Brettschneider, R. and Lorz, H. (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5,299–307.CrossRefGoogle Scholar
  16. 16.
    Wan, Y. C. and Lemaux, P. G. (1994) Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104,37–48.Google Scholar
  17. 17.
    Hagio, T., Hirabayashi, T., Machii, H. and Tomotsune, H. (1995) Production of fertile transgenic barley Hordeum vulgare. L.) plant using the hygromycin-resistance marker Plant Cell Rep. 14,329–334.CrossRefGoogle Scholar
  18. 18.
    Ritala, A., Aspegren, K., Kurten, U., Salmenkalliomarttila, M., Mannonen, L., Hannus, R., Kauppinen, V., Teeri, T. H. and Enari, T. M. (1994) Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol 24,317–325.CrossRefGoogle Scholar
  19. 19.
    Jahne, A., Becker, D., Brettschneider, R. and Lorz, H. (1994) Regeneration of transgenic, microspore-derived, fertile barley. Theor. Appl Genet 89,525–533.CrossRefGoogle Scholar
  20. 20.
    He, G. Y., Rooke, L., Steele, S., Bekes, F., Gras, P., Tatham, A. S., Fido, R., Barcelo, P., Shewry, P. R. and Lazzeri, P. A. (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular-weight glutenin subunit genes and modification of dough functionality Mol Breed. 5,377–386.CrossRefGoogle Scholar
  21. 21.
    Folling, L. and Olesen, A. (2001) Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment Plant Cell Rep. 20,629–636.CrossRefGoogle Scholar
  22. 22.
    Barcelo, P., Hagel, C., Becker, D., Martin, A. and Lorz, H. (1994) Transgenic cereal (Tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J. 5,583–592.CrossRefGoogle Scholar
  23. 23.
    Cho, M. J., Jiang, W. and Lemaux, P. G. (1999) High-frequency transformation of oat via microprojectile bombardment of seed-derived highly regenerative cultures. Plant Sci. 148,9–17.CrossRefGoogle Scholar
  24. 24.
    Torbert, K. A., Rines, H. W. and Somers, D. A. (1998) Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 38,226–231.CrossRefGoogle Scholar
  25. 25.
    Gless, C., Lorz, H. and Jahne-Gartner, A. (1998) Transgenic oat plants obtained at high efficiency by microprojectile bombardment of leaf base segments. J. Plant Physiol 152,151–157.Google Scholar
  26. 26.
    Zhang, S., Cho, M. J., Koprek, T., Yun, R., Bregitzer, P. and Lemaux, P. G. (1999) Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings Plant Cell Rep. 18,959–966.CrossRefGoogle Scholar
  27. 27.
    Altpeter, F., Vasil, V., Srivastava, V., Stoger, E. and Vasil, I. K. (1996) Accelerated production of transgenic wheat (Triticum aestivum L) plants Plant Cell Rep. 16,12–17.CrossRefGoogle Scholar
  28. 28.
    Barro, F., Cannell, M. E., Lazzeri, P. A. and Barcelo, P. (1998) The influence of auxins on transformation of wheat and Tritordeum and analysis of transgene integration patterns in transformants. Theor. ApplGenet 97,684–695.CrossRefGoogle Scholar
  29. 29.
    Harwood, W. A., Ross, S. M., Cilento, P. and Snape, J. W. (2000) The effect of DNA/gold particle preparation technique, and particle bombardment device, on the transformation of barley (Hordeum vulgare). Euphytica 111, 67–76.Google Scholar
  30. 30.
    Rasco-Gaunt, S., Riley, A., Barcelo, P. and Lazzeri, P. A. (1999) Analysis of particle bombardment parameters to optimise DNA delivery into wheat tissues. Plant Cell Rep. 19,118–127.CrossRefGoogle Scholar
  31. 31.
    Zhou, H., Arrowsmith, J. W., Fromm, M. E., Hironaka, C. M., Taylor, M. L., Rodriguez, D., Pajeau, M. E., Brown, S. M., Santino, C. G. and Fry, J. E. (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15,159–163.Google Scholar
  32. 32.
    Reed, J., Privalle, L., Powell, M. L., Meghji, M., Dawson, J., Dunder, E., Suttie, J., Wenck, A., Launis, K., Kramer, C., Chang, Y. F., Hansen, G. and Wright, M. (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell DevelopBiol-Plant 37,127–132.CrossRefGoogle Scholar
  33. 33.
    Koprek, T., Hansch, R., Nerlich, A., Mendel, R. R. and Schulze, J. (1996) Fertile transgenic barley of different cultivars obtained by adjustment of bombardment conditions to tissue response. Plant Sci. 119,79–91.CrossRefGoogle Scholar
  34. 34.
    Rasco-Gaunt, S., Riley, A., Cannell, M., Barcelo, P. and Lazzeri, P. A. (2001) Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment J ExpBot. 52,865–874.Google Scholar
  35. 35.
    Smith, E. F. and Townsend, C. O. (1907) A plant tumor of bacterial origin. Science 25,671–673.CrossRefGoogle Scholar
  36. 36.
    Chilton, M. D., Drummond, M. H., Merlo, D. J., Sciaky, D., Montoya, A. L., Gordon, M. P. and Nester, E. W. (1977) Stable incorporation of plasmid DNA into higher plant-cells – molecular-basis of crown gall tumorigenesis. Cell 11,263–271.CrossRefGoogle Scholar
  37. 37.
    Escobar, M. A. and Dandekar, A. M. (2003) Agrobacterium tumefaciens as an agent of disease Trends Plant Sci. 8,380–386.CrossRefGoogle Scholar
  38. 38.
    Gelvin, S. B. (2000) Agrobacterium and plant genes involved in T-DNA transfer and integration Ann. RevPlant PhysiolPlant MolBiol 51,223–256.CrossRefGoogle Scholar
  39. 39.
    Zambryski, P. C. (1992) Chronicles from the Agrobacterium plant cell-DNA ransfer story Ann. RevPlant PhysiolPlant MolBiol 43,465–490.CrossRefGoogle Scholar
  40. 40.
    Hooykaas, P. J. J. and Schilperoort, R. A. (1992) Agrobacterium and plant genetic engineering Plant Mol. Biol 19,15–38.CrossRefGoogle Scholar
  41. 41.
    Deframond, A. J., Barton, K. A. and Chilton, M. D. (1983) Mini-Ti – a new vector strategy for plant genetic engineering. Bio-Technology 1,262–269.Google Scholar
  42. 42.
    Hoekema, A., Hirsch, P. R., Hooykaas, P. J. J. and Schilperoort, R. A. (1983) A binary plant vector strategy based on separation of Vir- region and T-region of the Agrobacterium tumefaciens Ti-plasmid Nature 303,179–180.CrossRefGoogle Scholar
  43. 43.
    Bevan, M. (1984) Binary Agrobacterium vectors for plant transformation Nucleic Acids Res. 12,8711–8721.CrossRefGoogle Scholar
  44. 44.
    Zambryski, P., Joos, H., Genetello, C., Leemans, J., Vanmontagu, M. and Schell, J. (1983) Ti-plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J. 2,2143–2150.Google Scholar
  45. 45.
    Simoens, C., Alliotte, T., Mendel, R., Muller, A., Schiemann, J., Vanlijsebettens, M., Schell, J., Vanmontagu, M. and Inze, D. (1986) A binary vector for transferring genomic libraries to plants. Nucleic Acids Res. 14,8073–8090.CrossRefGoogle Scholar
  46. 46.
    An, G., Watson, B. D., Stachel, S., Gordon, M. P. and Nester, E. W. (1985) New cloning vehicles for transformation of higher-plants. EMBO J. 4,277–284.Google Scholar
  47. 47.
    Fraley, R. T., Rogers, S. G., Horsch, R. B., Eichholtz, D. A., Flick, J. S., Fink, C. L., Hoffmann, N. L. and Sanders, P. R. (1985) The SEV system – a new disarmed ti-plasmid vector system for plant transformation. Bio-Technology 3,629–635.Google Scholar
  48. 48.
    Hernalsteens, J. P., Vanvliet, F., Debeuckeleer, M., Depicker, A., Engler, G., Lemmers, M., Holsters, M., Vanmontagu, M. and Schell, J. (1980) The Agrobacterium tumefaciens ti plasmid as a host vector system for introducing foreign DNA in plant-cells Nature 287,654–656.CrossRefGoogle Scholar
  49. 49.
    Marton, L., Wullems, G. J., Molendijk, L. and Schilperoort, R. A. (1979) In vitro. transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens Nature 277,129–131.CrossRefGoogle Scholar
  50. 50.
    Herrera-Estrella, L., Deblock, M., Messens, E., Hernalsteens, J. P., Vanmontagu, M. and Schell, J. (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2,987–995.Google Scholar
  51. 51.
    Bevan, M. W., Flavell, R. B. and Chilton, M. D. (1983) A chimaeric antibiotic-resistance gene as a selectable marker for plant-cell transformation. Nature 304,184–187.CrossRefGoogle Scholar
  52. 52.
    Davey, M. R., Cocking, E. C., Freeman, J., Pearce, N. and Tudor, I. (1980) Transformation of petunia protoplasts by isolated Agrobacterium plasmids Plant Sci. Lett 18,307–313.CrossRefGoogle Scholar
  53. 53.
    Krens, F. A., Molendijk, L., Wullems, G. J. and Schilperoort, R. A. (1982) In vitro transformation of plant protoplasts with ti-plasmid DNA Nature 296,72–74.CrossRefGoogle Scholar
  54. 54.
    Herrera-Estrella, L., Depicker, A., Vanmontagu, M. and Schell, J. (1983) Expression of chimaeric genes transferred into plant-cells using a ti-plasmid-derived vector. Nature 303,209–213.CrossRefGoogle Scholar
  55. 55.
    Horsch, R. B., Fraley, R. T., Rogers, S. G., Sanders, P. R., Lloyd, A. and Hoffmann, N. (1984) Inheritance of functional foreign genes in plants. Science 223,496–498.CrossRefGoogle Scholar
  56. 56.
    Deblock, M., Herreraestrella, L., Vanmontagu, M., Schell, J. and Zambryski, P. (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3,1681–1689.Google Scholar
  57. 57.
    Gasser, C. S. and Fraley, R. T. (1989) Genetically engineering plants for crop improvement. Science 244,1293–1299.CrossRefGoogle Scholar
  58. 58.
    Bytebier, B., Deboeck, F., Degreve, H., Vanmontagu, M. and Hernalsteens, J. P. (1987) T-DNA organization in tumor cultures and transgenic plants of the monocotyledon Asparagus officinalis P NASUSA 84,5345–5349.CrossRefGoogle Scholar
  59. 59.
    Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T. (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA Plant J. 6,271–282.CrossRefGoogle Scholar
  60. 60.
    Chan, M. T., Chang, H. H., Ho, S. L., Tong, W. F. and Yu, S. M. (1993) Agrobacterium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter beta-glucuronidase gene Plant Mol. Biol 22,491–506.CrossRefGoogle Scholar
  61. 61.
    Gould, J., Devey, M., Hasegawa, O., Ulian, E. C., Peterson, G. and Smith, R. H. (1991) Transformation of Zea mays. L. using Agrobacterium tumefaciens and the shoot apex Plant Physiol. 95,426–434.CrossRefGoogle Scholar
  62. 62.
    Smith, R. H. and Hood, E. E. (1995) Agrobacterium tumefaciens transformation of monocotyledons Crop Sci. 35,301–309.CrossRefGoogle Scholar
  63. 63.
    Cheng, M., Lowe, B. A., Spencer, T. M., Ye, X. D. and Armstrong, C. L. (2004) Factors influencing Agrobacterium-mediated transformation of monocotyledonous species In Vitro Cell DevelopBiol-Plant 40,31–45.CrossRefGoogle Scholar
  64. 64.
    Brunaud, W., Balzergue, S., Dubreucq, B., Aubourg, S., Samson, F., Chauvin, S., Bechtold, N., Cruaud, C., DeRose, R., Pelletier, G., Lepiniec, L., Caboche, M. and Lecharny, A. (2002) T-DNA integration into the Arabidopsis genome depends on sequences of pre-insertion sites. EMBO Rep. 3,1152–1157.CrossRefGoogle Scholar
  65. 65.
    Valentine, L. (2003) Agrobacterium tumefaciens and the plant: The David and Goliath of modern genetics Plant Physiol. 133,948–955.CrossRefGoogle Scholar
  66. 66.
    Kohli, A., Twyman, R. M., Abranches, R., Wegel, E., Stoger, E. and Christou, P. (2003) Transgene integration, organization and interaction in plants. Plant Mol. Biol 52,247–258.CrossRefGoogle Scholar
  67. 67.
    Bajaj, S. and Mohanty, A. (2005) Recent advances in rice biotechnology-towards genetically superior transgenic rice. Plant Biotech. J 3,275–307CrossRefGoogle Scholar
  68. 68.
    Shrawat, A. K. and Lorz, H. (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers Plant Biotech. J 4,575–603.CrossRefGoogle Scholar
  69. 69.
    Gelvin, S. B. (2003) Agobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool Microbiol. MolBiolRev 67,16–37Google Scholar
  70. 70.
    Jones, H. D. (2005) Wheat transformation: current technology and applications to grain development and composition. J. Cereal Sci 41,137–147.CrossRefGoogle Scholar
  71. 71.
    Dai, S. H., Zheng, P., Marmey, P., Zhang, S. P., Tian, W. Z., Chen, S. Y., Beachy, R. N. and Fauquet, C. (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment Mol. Breed 7,25–33.CrossRefGoogle Scholar
  72. 72.
    Travella, S., Ross, S. M., Harden, J., Everett, C., Snape, J. W. and Harwood, W. A. (2005) A comparison of transgenic barley lines produced by particle bombardment and Agrobacterium-mediated techniques Plant Cell Rep. 23,780–789.CrossRefGoogle Scholar
  73. 73.
    Shou, H. X., Frame, B. R., Whitham, S. A. and Wang, K. (2004) Assessment of transgenic maize events produced by particle bombardment or Agrobacterium-mediated transformation Mol. Breed 13,201–208.CrossRefGoogle Scholar
  74. 74.
    Wu, H., Sparks, C., Amoah, B. and Jones, H. D. (2003) Factors influencing successful Agrobacterium-mediated genetic transformation of wheat Plant Cell Rep. 21,659–668.Google Scholar
  75. 75.
    Wu, H., Sparks, C. A. and Jones, H. D. (2006) Characterisation of T-DNA loci and vector backbone sequences in transgenic wheat produced by Agrobacterium-mediated transformation Mol. Breed 18,195–208.CrossRefGoogle Scholar
  76. 76.
    Cheng, M., Fry, J. E., Pang, S. Z., Zhou, H. P., Hironaka, C. M., Duncan, D. R., Conner, T. W. and Wan, Y. C. (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens Plant Physiol. 115,971–980.Google Scholar
  77. 77.
    Cheng, M., Hu, T. C., Layton, J., Liu, C. N. and Fry, J. E. (2003) Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat In Vitro Cell DevelopBiol-Plant 39,595–604.CrossRefGoogle Scholar
  78. 78.
    Hu, T., Metz, S., Chay, C., Zhou, H. P., Biest, N., Chen, G., Cheng, M., Feng, X., Radionenko, M., Lu, F. and Fry, J. (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection Plant Cell Rep. 21,1010–1019.CrossRefGoogle Scholar
  79. 79.
    Rooke, L., Steele, S. H., Barcelo, P., Shewry, P. R. and Lazzeri, P. A. (2003) Transgene inheritance, segregation and expression in bread wheat. Euphytica 129,301–309.CrossRefGoogle Scholar
  80. 80.
    Howarth, J. R., Jacquet, J. N., Doherty, A., Jones, H. D. and Cannell, M. E. (2005) Molecular genetic analysis of silencing in two lines of Triticum aestivum transformed with the reporter gene construct pAHC25 Annals Appl. Biol 146,311–320.CrossRefGoogle Scholar
  81. 81.
    Makarevitch, I., Svitashev, S. K. and Somers, D. A. (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol. Biol 52,421–432.CrossRefGoogle Scholar
  82. 82.
    Svitashev, S. K., Pawlowski, W. P., Makarevitch, I., Plank, D. W. and Somers, D. A. (2002) Complex transgene locus structures implicate multiple mechanisms for plant transgene rearrangement. Plant J. 32,433–445.CrossRefGoogle Scholar
  83. 83.
    Lange, M., Vincze, E., Moller, M. G. and Holm, P. B. (2006) Molecular analysis of transgene and vector backbone integration into the barley genome following Agrobacterium-mediated transformation Plant Cell Rep. 25,815–820.CrossRefGoogle Scholar
  84. 84.
    Kim, S. R., Lee, J., Jun, S. H., Park, S., Kang, H. G., Kwon, S. and An, G. (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol. Biol 52,761–773.CrossRefGoogle Scholar
  85. 85.
    Afolabi, A. S., Worland, B., Snape, J. W. and Vain, P. (2004) A large-scale study of rice plants transformed with different T-DNAs provides new insights into locus composition and T-DNA linkage configurations. Theor. ApplGenet 109,815–826.CrossRefGoogle Scholar
  86. 86.
    Vain, P., Afolabi, A. S., Worland, B. and Snape, J. W. (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor. ApplGenet 107,210–217.CrossRefGoogle Scholar
  87. 87.
    Kuraya, Y., Ohta, S., Fukuda, M., Hiei, Y., Murai, N., Hamada, K., Ueki, J., Imaseki, H. and Komari, T. (2004) Suppression of transfer of non-T-DNA ‘vector backbone’ sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens Mol. Breed 14,309–320.CrossRefGoogle Scholar
  88. 88.
    Fu, X. D., Duc, L. T., Fontana, S., Bong, B. B., Tinjuangjun, P., Sudhakar, D., Twyman, R. M., Christou, P. and Kohli, A. (2000) Linear transgene constructs lacking vector backbone sequences generate low-copy-number transgenic plants with simple integration patterns. Transgen. Res 9,11–19.CrossRefGoogle Scholar
  89. 89.
    Agrawal, P. K., Kohli, A., Twyman, R. M. and Christou, P. (2005) Transformation of plants with multiple cassettes generates simple transgene integration patterns and high expression levels. Mol. Breed 16,247–260.CrossRefGoogle Scholar
  90. 90.
    Altpeter, F., Baisakh, N., Beachy, R., Bock, R., Capell, T., Christou, P., Daniell, H., Datta, K., Datta, S., Dix, P. J., Fauquet, C., Huang, N., Kohli, A., Mooibroek, H., Nicholson, L., Nguyen, T. T., Nugent, G., Raemakers, K., Romano, A., Somers, D. A., Stoger, E., Taylor, N. and Visser, R. (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol. Breed 15,305–327.CrossRefGoogle Scholar
  91. 91.
    Feldmann, K. A. and Marks, M. D. (1987) Agrobacterium-mediated transformation of germinating seeds of Arabidopsis thaliana – a non-tissue culture approach Mol. GenGenet 208,1–9.CrossRefGoogle Scholar
  92. 92.
    Bechtold, N., Ellis, J. and Pelletier, G. (1993) In planta Agrobacterium-mediated Ge.e-transfer by infiltration of adult Arabidopsis thaliana plants Comptes Rendus De L Academie Des Sciences Serie Iii-Sciences De La Vie-Life Sciences 316,1194–1199.Google Scholar
  93. 93.
    Craze, M. and Risacher, T. (2000) Plant Transformation Method. Patent No. WO 00/63398.Google Scholar
  94. 94.
    Zale, J. M. and Steber, C. M. (2006) In planta, Jan transformation of wheat as a genomics tool, in Proceedings of the Plant and Animal Genomics XIV ConferenceSan Diego, USA.14–18,2006,Google Scholar
  95. 95.
    Supartana, P., Shimizu, T., Nogawa, M., Shioiri, H., Nakajima, T., Haramoto, N., Nozue, M. and Kojima, M. (2006) Development of simple and efficient in Planta transformation method for wheat (Triticum aestivum L.) using Agrobacterium tumefaciens J. BiosciBioeng 102,162–170.Google Scholar
  96. 96.
    Taguchi-Shiobara, F., Yamamoto, T., Yano, M. and Oka, S. (2006) Mapping QTLs that control the performance of rice tissue culture and evaluation of derived near-isogenic lines. Theor. ApplGenet 112,968–976.CrossRefGoogle Scholar
  97. 97.
    Krakowsky, M. D., Lee, M., Garay, L., Woodman-Clikeman, W., Long, M. J., Sharopova, N., Frame, B. and Wang, K. (2006) Quantitative trait loci for callus initiation and totipotency in maize (Zea mays L.) Theor. ApplGenet 113,821–830.CrossRefGoogle Scholar
  98. 98.
    Nishimura, A., Ashikari, M., Lin, S., Takashi, T., Angeles, E. R., Yamamoto, T. and Matsuoka, M. (2005) Isolation of a rice regeneration quantitative trait loci gene and its application to transformation systems. P NASUSA 102,11940–11944.CrossRefGoogle Scholar
  99. 99.
    Che, P., Lall, S., Nettleton, D. and Howell, S. H. (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol. 141,620–637.CrossRefGoogle Scholar
  100. 100.
    DeCook, R., Lall, S., Nettleton, D. and Howell, S. H. (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172,1155–1164.CrossRefGoogle Scholar
  101. 101.
    Che, P., Love, T. M., Frame, B. R., Wang, K., Carriquiry, A. L. and Howell, S. H. (2006) Gene expression patterns during somatic embryo development and germination in maize Hi II callus cultures. Plant Mol. Biol 62,1–14CrossRefGoogle Scholar
  102. 102.
    Joint FAO/WHO Consultation on the Assessment of Biotechnology in Food Production and Processing as Related to Food Safety (1990) Geneva S, Strategies for assessing the safety of foods produced by biotechnology: report of a joint FAO/WHO consultation, Geneva, 5–10 November 1990.Google Scholar
  103. 103.
    OECD (1993) Organisation for Economic Co-operation and Development. Safety Evaluation of Foods Derived by Modern Biotechnology – Concepts and Principles, OECD, Paris.Google Scholar
  104. 104.
    Kuiper, H. A., Kleter, G. A., Noteborn, H. and Kok, E. J. (2001) Assessment of the food safety issues related to genetically modified foods. Plant J. 27,503–528.CrossRefGoogle Scholar
  105. 105.
    Konig, A., Cockburn, A., Crevel, R. W. R., Debruyne, E., Grafstroem, R., Hammerling, U., Kimber, I., Knudsen, I., Kuiper, H. A., Peijnenburg, A., Penninks, A. H., Poulsen, M., Schauzu, M. and Wal, J. M. (2004) Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol 42,1047–1088.CrossRefGoogle Scholar
  106. 106.
    Levidow, L., Murphy, J. and Carr, S. (2007) Recasting “substantial equivalence”: transatlantic governance of GM food. Science Technol Human Values 32,53–91Google Scholar
  107. 107.
    Baker, J. M., Hawkins, N. D., Ward, J. L., Lovegrove, A., Napier, J. A., Shewry, P. R. and Beale, M. H. (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotech. J 4,381–392.CrossRefGoogle Scholar
  108. 108.
    Manetti, C., Bianchetti, C., Bizzari, M., Casciani, L., Castro, C., D’Ascenzo, G., Delfini, M., Di Cocco, M. E., Lagana, A., Miccheli, A., Motto, M. and Conti, F. (2004) NMR-based metabonomic study of transgenic maize. Phytochem. 65,3187–3198.CrossRefGoogle Scholar
  109. 109.
    Herman, R. A., Storer, N. P., Phillips, A. M., Prochaska, L. M. and Windels, P. (2007) Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regul. ToxicolPharmacol 47,37–47.CrossRefGoogle Scholar
  110. 110.
    Oberdoerfer, R. B., Shillito, R. D., De Beuckeleer, M. and Mitten, D. H. (2005) Rice (Oryza sativa L.) containing the bar gene is compositionally equivalent to the nontransgenic counterpart J. AgrFood Chem 53,1457–1465.CrossRefGoogle Scholar
  111. 111.
    Miki, B. and McHugh, S. (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol 107,193–232.CrossRefGoogle Scholar
  112. 112.
    Wilmink, A. and Dons, J. J. M. (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol. BiolReport 11,165–185.CrossRefGoogle Scholar

Copyright information

© Humana Press, a part of Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Agrasys S.LSpain
  2. 2.Centre for Crop Genetic Improvement, Department of Plant SciencesRothamsted ResearchHertfordshireUK

Personalised recommendations