Mitochondria pp 107-123 | Cite as

Neurospora crassa as a Model Organism for Mitochondrial Biogenesis

  • Frank E. Nargang
  • Doron Rapaport
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)


Neurospora crassa has proven to be an excellent organism for studying various aspects of the biology of mitochondria by biochemical and genetic approaches. As N. crassa is an obligate aerobe and contains complex I, its mitochondria are more similar to mammalian mitochondria than those of yeast. The recent sequencing of the genome of N. crassa and a gene knockout project that is under way make the organism even more attractive. We describe some of the advantages of N. crassa as a model organism and present methods for isolation of mitochondria, fractionation of these organelles, and disruption of essential genes in this organism.

Key Words

Digitonin fractionation Neurospora crassa sheltered disruption 


  1. 1.
    Beadle, G. W., and Tatum, E. L. (1941) Genetic control of biochemical reactions in Neurospora. Proc. Natl. Acad. Sci. USA 27, 499–506.CrossRefPubMedGoogle Scholar
  2. 2.
    Davis, R. H., and De Serres, F. J. (1970) Genetic and microbiological research techniques for Neurospora crassa. Methods Enzymol. 17, 79–143.CrossRefGoogle Scholar
  3. 3.
    Perkins, D. D. (1992) Neurospora: the organism behind the molecular revolution. Genetics 130, 687–701.PubMedGoogle Scholar
  4. 4.
    Perkins, D. D., Radford, A., and Sachs, M. S. (2001) The Neurospora Compendium. Chromosomal Loci, Academic Press, San Diego, CA.Google Scholar
  5. 5.
    Davis, R. H. (2000) Neurospora. Contributions of a Model Organism, Oxford University Press, Oxford, UK.Google Scholar
  6. 6.
    Galagan, J. E., Calvo, S. E., Borkovich, K. A., et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422, 859–868.CrossRefPubMedGoogle Scholar
  7. 7.
    Borkovich, K. A., Alex, L. A., Yarden, O., et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Micro. Mol. Biol. Rev. 68, 1–108.CrossRefGoogle Scholar
  8. 8.
    Colot, H. V., Park, G., Turner, G.E., et al. (2006) A high-throughput gene Knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc. Natl. Acad. Sci. USA 103, 10,352–10,357.CrossRefPubMedGoogle Scholar
  9. 9.
    Ninomiya, Y., Suzuki, K., Ishii, C., and Inoue, H. (2004) Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101, 12,248–12,253.CrossRefPubMedGoogle Scholar
  10. 10.
    Selker, E. U. (1990) Premeiotic instability of repeated sequences in Neurospora crassa. Annu. Rev. Genet. 24, 579–613.CrossRefPubMedGoogle Scholar
  11. 11.
    Harkness, T. A. A., Metzenberg, R. L., Schneider, H., Lill, R., Neupert, W., and Nargang, F. E. (1994) Inactivation of the Neurospora crassa gene encoding the mitochondrial protein import receptor MOM19 by the technique of “sheltered RIP”. Genetics 136, 107–118.PubMedGoogle Scholar
  12. 12.
    Grad, L., Descheneau, A., Neupert, W., Lill, R., and Nargang, F. (1999) Inactivation of the Neurospora crassa mitochondrial outer membrane protein TOM70 by repeat-induced point mutation (RIP) causes defects in mitochondrial protein import and morphology. Curr. Genet. 36, 137–146.CrossRefPubMedGoogle Scholar
  13. 13.
    Taylor, R., McHale, B., and Nargang, F. E. (2003) Characterization of Neurospora crassa Tom40-deficient mutants and effect of specific mutations on Tom40 assembly. J. Biol. Chem. 278, 765–775.CrossRefPubMedGoogle Scholar
  14. 14.
    Rountree, M. R., and Selker, E. U. (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev. 11, 2383–2395.CrossRefPubMedGoogle Scholar
  15. 15.
    Kennell, J. C., Collins, R. A., Griffiths, A. J. F., and Nargang, F. E. (2004) Mitochondrial genetics of Neurospora, in The Mycota II. Genetics and Biotechnology (Kück, U., ed.), 2nd Ed., Springer-Verlag, Berlin, pp. 95–112.Google Scholar
  16. 15a.
    Schmitt, S.H., Prokisch, H., Schlunk, T., et al. (2006) Proteome analysis of mitochondrial outer membrane from Neurospora crassa. Proteomics 6, 72–80.CrossRefPubMedGoogle Scholar
  17. 16.
    Videira, A., and Duarte, M. (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim. Biophys. Acta 1555, 187–191.CrossRefPubMedGoogle Scholar
  18. 17.
    Chaudhuri, M., Ajayi, W., Temple, S., and Hill, G. C. (1995) Identification and partial purification of a stage specific 33 kDa mitochondrial protein as the alternative oxidase of Trypanosoma brucei brucei bloodstream trypanosomes. J. Eukaryot. Microbiol. 42, 467–472.CrossRefPubMedGoogle Scholar
  19. 18.
    Joseph-Horne, T., Holloman, D. W., and Wood, P. M. (2001) Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179–195.CrossRefPubMedGoogle Scholar
  20. 19.
    Moore, A. L., Albury, M. S., Crichton, P. G., and Affourtit, C. (2002) Function of the alternative oxidase: is it still a scavenge? Trends Plant Sci. 7, 478–481.CrossRefPubMedGoogle Scholar
  21. 20.
    Stenmark, P., and Nordlund, P. (2003) A prokaryotic alternative oxidase present in the bacterium Novosphingobium aromaticivorans. FEBS Lett. 552, 189–192.CrossRefPubMedGoogle Scholar
  22. 21.
    McDonald, A. E., and Vanlerberghe, G. C. (2004) Branched mitochondrial electron transport in the animalia: presence of alternative oxidase in several animal phyla. IUBMB Life 56, 333–341.CrossRefPubMedGoogle Scholar
  23. 22.
    Li, Q., Ritzel, R. G., McLean, L. T. T., et al. (1996) Cloning and analysis of the alternative oxidase of Neurospora crassa. Genetics 142, 129–140.PubMedGoogle Scholar
  24. 23.
    Lambowitz, A. M., Sabourin, J. R., Bertand, H., Nickels, R., and McIntosh, L. (1989) Immunological identification of the alternative oxidase of Neurospora crassa mitochondria. Mol. Cell. Biol. 9, 1362–1364.PubMedGoogle Scholar
  25. 24.
    Descheneau, A. T., Cleary, I. A., and Nargang, F. E. (2005) Genetic evidence for a regulatory pathway controlling alternative oxidase production in Neurospora crassa. Genetics 169, 123–135.CrossRefPubMedGoogle Scholar
  26. 25.
    Hallermayer, G., Zimmermann, R., and Neupert, W. (1977) Kinetic studies on the transport of cytoplasmatically synthesized proteins into mitochondria in intact cells of Neurospora crassa. Eur. J. Biochem. 81, 523–532.CrossRefPubMedGoogle Scholar
  27. 26.
    Kiebler, M., Pfaller, R., Söllner, T., et al. (1990) Identification of a mitochondrial receptor complex required for recognition and membrane insertion of precursor proteins. Nature 348, 610–616.CrossRefPubMedGoogle Scholar
  28. 27.
    Söllner, T., Rassow, J., Wiedmann, M., et al. (1992) Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature 355, 84–87.CrossRefPubMedGoogle Scholar
  29. 28.
    Künkele, K.-P., Heins, S., Dembowski, M., et al. (1998) The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.CrossRefPubMedGoogle Scholar
  30. 29.
    Ahting, U., Thun, C., Hegerl, R., et al. (1999) The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.CrossRefPubMedGoogle Scholar
  31. 30.
    Vasiljev, A., Ahting, U., Nargang, F. E., et al. (2004) Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458.CrossRefPubMedGoogle Scholar
  32. 31.
    Nargang, F. E., Künkele, K.-P., Mayer, A., Ritzel, R. G., Neupert, W., and Lill, R. (1995)“Sheltered disruption” of Neurospora crassa MOM22, an essential component of the mitochondrial protein import complex. EMBO J. 14, 1099–1108.PubMedGoogle Scholar
  33. 32.
    Staben, C., Jensen, B., Singer, M., Pollock, J., and Schechtman, M. (1989) Use of bacterial hygromycin B resistance gene as a dominant selectable marker in Neurospora crassa transformation. Fungal Genet. Newsl. 36, 79–81.Google Scholar
  34. 33.
    Grotelueschen, J., and Metzenberg, R. (1995) Some property of the nucleus determines the competence of Neurospora crassa for transformation. Genetics 139, 1545–1551.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Frank E. Nargang
    • 1
  • Doron Rapaport
    • 2
  1. 1.Department of Biological SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Institut für Physiologische Chemie der Universität MünchenMünchenGermany

Personalised recommendations