Mitochondria pp 559-571 | Cite as

Arabidopsis Mitochondrial Proteomics

  • Joshua L. Heazlewood
  • Harvey Millar A. 
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)


Significant efforts have sought to uncover the protein profile of Arabidopsis mitochondria to act as a model for the mitochondrial proteome from plants. A combination of techniques have been undertaken to achieve this goal. We outline a basic two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) separation of mitochondrial proteins, in-gel trypsination techniques, complex protein lysate digestions, and the identification of proteins by matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI) mass spectrometry.

Key Words

Arabidopsis mass spectrometry proteomics 2D-PAGE 


  1. 1.
    Kruft, V., Eubel, H., Jansch, L., Werhahn, W., and Braun, H. P. (2001) Proteomic approach to identify novel mitochondrial proteins in Arabidopsis. Plant Physiol. 127, 1694–1710.PubMedCrossRefGoogle Scholar
  2. 2.
    Millar, A. H., Sweetlove, L. J., Giege, P., and Leaver, C. J. (2001) Analysis of the Arabidopsis mitochondrial proteome. Plant Physiol. 127, 1711–1727.PubMedCrossRefGoogle Scholar
  3. 3.
    Werhahn, W. and Braun, H. P. (2002) Biochemical dissection of the mitochondrial proteome from Arabidopsis thaliana by three-dimensional gel electrophoresis. Electrophoresis 23, 640–646.PubMedCrossRefGoogle Scholar
  4. 4.
    Herald, V. L., Heazlewood, J. L., Day, D. A., and Millar, A. H. (2003) Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Lett. 537, 96–100.PubMedCrossRefGoogle Scholar
  5. 5.
    Millar, A. H. and Heazlewood, J. L. (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol. 131, 443–553.PubMedCrossRefGoogle Scholar
  6. 6.
    Brugière, S., Kowalski, S., Ferro, M., et al. (2004) The hydrophobic proteome of mitochondrial membranes from Arabidopsis cell suspensions. Phytochemistry 65, 1693–1707.PubMedCrossRefGoogle Scholar
  7. 7.
    Eubel, H., Jansch, L., and Braun, H. P. (2003) New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of Complex II. Plant Physiol. 133, 274–286.PubMedCrossRefGoogle Scholar
  8. 8.
    Heazlewood, J. L., Howell, K. A., and Millar, A. H. (2003) Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochim. Biophys. Acta 1604, 159–169.PubMedCrossRefGoogle Scholar
  9. 9.
    Heazlewood, J. L., Whelan, J., and Millar, A. H. (2003) The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FOATP synthase. FEBS Lett. 540, 201–205.PubMedCrossRefGoogle Scholar
  10. 10.
    Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., and Millar, A. H. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16, 241–256.PubMedCrossRefGoogle Scholar
  11. 11.
    Millar, A. H., Liddell, A., and Leaver, C. J. (2001) Chapter 3 in Mitochondria, Vol. 65 (Pon, L. A., and Schon, E. A., eds.), Academic Press, San Diego, CA, pp. 53–74.Google Scholar
  12. 12.
    Washburn, M. P., Wolters, D., and Yates, J. R., 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19, 242–247.PubMedCrossRefGoogle Scholar
  13. 13.
    Herbert, B., Galvani, M., Hamdan, M., et al. (2001) Reduction and alkylation of proteins in preparation of two-dimensional map analysis: why, when, and how? Electrophoresis 22, 2046–2057.PubMedCrossRefGoogle Scholar
  14. 14.
    Bordini, E., Hamdan, M., and Righetti, P. G. (1999) Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry for monitoring alkylation of β-lactoglobulin B exposed to a series of N-substituted acrylamide monomers. Rapid Commun. Mass Spectrom. 13, 2209–2215.PubMedCrossRefGoogle Scholar
  15. 15.
    Herbert, B. R., Molloy, M. P., Gooley, A. A., Walsh, B. J., Bryson, W. G., and Williams, K. L. (1998) Improved protein solubility in two-dimensional electrophoresis using tributyl phosphine as reducing agent. Electrophoresis 19, 845–851.PubMedCrossRefGoogle Scholar
  16. 16.
    Rabilloud, T., Adessi, C., Giraudel, A., and Lunardi, J. (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18, 307–316.PubMedCrossRefGoogle Scholar
  17. 17.
    Chevallet, M., Santoni, V., Poinas, A., et al. (1998) New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 19, 1901–1909.PubMedCrossRefGoogle Scholar
  18. 18.
    Herbert, B. (1999) Advances in protein solubilisation for two-dimensional electrophoresis. Electrophoresis 20, 660–663.PubMedCrossRefGoogle Scholar
  19. 19.
    Berkelman, T., and Stenstedt, T. (2002) 2-D Electrophoresis Using Immobilized pH Gradients: Principles and Methods, GE Healthcare, 80-6429-60, Edition AC, Uppsala, Sweden.Google Scholar
  20. 20.
    GE Healthcare. (2003) Instructions: Immobiline DryStrip, GE Healthcare, 71-5024-30, Edition AC, Uppsala, Sweden.Google Scholar
  21. 21.
    Vollmer, M., Hörth, P., and Nägele, E. (2003) Tools and Considerations to Increase Resolution of Complex Proteome Samples by Two-Dimensional Offline LC/MS, Agilent Technologies Palo Alto, CA.Google Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Joshua L. Heazlewood
    • 1
  • Harvey Millar A. 
    • 2
  1. 1.ARC Centre of Excellence in Plant Energy Biology and School of Biomedical and Chemical SciencesThe University of Western AustraliaCrawleyAustralia
  2. 2.ARC Centre of Excellence in Plant Energy Biology and School of Biomedical and Chemical SciencesThe University of Western AustraliaPerthAustralia

Personalised recommendations