Mitochondria pp 433-459 | Cite as

Fluorescence Imaging of Mitochondria in Yeast

  • Theresa C. Swayne
  • Anna C. Gay
  • Liza A. Pon
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)


The budding yeast Saccharomyces cerevisiae has many advantages as a model system, but until recently high-resolution microscopy was not often attempted in this organism. Its small size, rounded shape, and rigid cell wall were obstacles to exploring the cell biology of this model eukaryote. However, it is now feasible for laboratories to acquire and analyze high-resolution, multidimensional images of yeast cell biology, including the mitochondria. As a result, imaging of yeast has emerged as an important tool in eukaryotic cell biology. This chapter describes labeling methods and optical approaches for visualizing yeast mitochondria using fluorescence microscopy.

Key Words

Deconvolution fluorescent proteins immunofluorescence live-cell imaging microscopy vital staining yeast 


  1. 1.
    Koehler, C. M. (2004) New developments in mitochondrial assembly. Annu. Rev. Cell. Dev. Biol. 20, 309–335.PubMedCrossRefGoogle Scholar
  2. 2.
    Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A. (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.PubMedCrossRefGoogle Scholar
  3. 3.
    Riezman, H., Hase, T., van Loon, A. P., Grivell, L. A., Suda, K., and Schatz, G. (1983) Import of proteins into mitochondria: a 70-kDa outer membrane protein with a large carboxy-terminal deletion is still transported to the outer membrane. EMBO J. 2, 2161–2168.PubMedGoogle Scholar
  4. 4.
    Smith, M. G., Simon, V. R., O’Sullivan, H., and Pon, L. A. (1995) Organelle-cytoskeletal interactions: actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell. 6, 1381–1396.PubMedGoogle Scholar
  5. 5.
    Fehrenbacher, K. F., Boldogh, I. R., and Pon, L. A. (2005) A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Mol. Biol. Cell. 16, 5094–5102.PubMedCrossRefGoogle Scholar
  6. 6.
    Boldogh, I. R., Ramcharan., S. L., Yang, H.-C., and Pon, L. A. (2004) A type V myosin (Myo2p) and a Rab-like protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol. Biol. Cell. 15, 3994–4002.PubMedCrossRefGoogle Scholar
  7. 7.
    Yang, H.-C., Palazzo, A., Swayne, T. C., and Pon, L. A. (1999) A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr. Biol. 9, 1111–1114.PubMedCrossRefGoogle Scholar
  8. 8.
    Boldogh, I. R., Nowakowski, D. W., Yang, H-C., et al. (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell. 14, 4618–4627.PubMedCrossRefGoogle Scholar
  9. 9.
    Hobbs, A. E., Srinivasan, M., McCaffery, J. M., and Jensen, R. E. (2001) Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell. Biol. 152, 401–410.PubMedCrossRefGoogle Scholar
  10. 10.
    Simon, V. R., Swayne, T. C., and Pon, L. A. (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol. 130, 345–354.PubMedCrossRefGoogle Scholar
  11. 11.
    Nunnari, J., Marshall, W. F., Straight, A., Murray, A., Sedat, J. W., and Walter, P. (1997) Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol. Biol. Cell. 8, 1233–1242.PubMedGoogle Scholar
  12. 12.
    Azpiroz, R. and Butow, R. A. (1993) Patterns of mitochondrial sorting in yeast zygotes. Mol. Biol. Cell. 4, 21–36.PubMedGoogle Scholar
  13. 13.
    Wallace, W., Schaefer, L. H., and Swedlow, J. R. (2001) A workingperson’s guide to deconvolution in light microscopy. Biotechnology 31, 1076–1078.Google Scholar
  14. 14.
    Inoué, S. and Inoué, T. (2002) Direct-view high-speed confocal scanner: the CSU-10. Meth. Cell Biol. 70, 87–127.CrossRefGoogle Scholar
  15. 15.
    Lippincott-Schwartz, J., Altan-Bonnet, N., and Patterson, G. H. (2003) Photobleaching and photoactivation: following protein dynamics in living cells. Nat. Cell Biol. 5, S7–S14.CrossRefGoogle Scholar
  16. 16.
    Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D., and Hegemann, J. H. (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23.PubMedCrossRefGoogle Scholar
  17. 17.
    Boldogh, I., Vojtov, N., Karmon, S., and Pon, L. A. (1998) Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins, Mmm1p and Mdm10p. J. Cell Biol. 141, 1371–1381.PubMedCrossRefGoogle Scholar
  18. 18.
    Okamoto, K., Perlman, P. S., and Butow, R. A. (2001) Targeting of green fluorescent protein to mitochondria. Meth. Cell Biol. 65, 277–283.CrossRefGoogle Scholar
  19. 19.
    Visser, W., van Spronsen, E. A., Nanninga, N., Pronk, J. T., Kuenen, J. G., and van Dijken, J. P. (1995) Effects of growth conditions on mitochondrial morphology in Saccharomyces cerevisiae. Antonie van Leeuwenhoek 67, 243–253.PubMedCrossRefGoogle Scholar
  20. 20.
    Stevens, B. (1977) Variation in number and volume of the mitochondria in yeast according to growth conditions. A study based on serial sectioning and computer graphics reconstitution. Biol. Cell. 28, 37–56.Google Scholar
  21. 21.
    Damsky, C. H. (1976) Environmentally induced changes in mitochondria and endoplasmic reticulum of Saccharomyces carlsbergensis yeast. J. Cell Biol. 71, 123–135.PubMedCrossRefGoogle Scholar
  22. 22.
    Boldogh, I. R., Yang, H-C., Nowakowski, W. D., et al. (2001) Arp 2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. Sci. U. S. A. 98, 3162–3167.PubMedCrossRefGoogle Scholar
  23. 23.
    Lillie, S. H., and Brown, S. S. (1994) Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–842.PubMedCrossRefGoogle Scholar
  24. 24.
    Fehrenbacher, K. L., Yang, H.-C., Gay, A. C., Huckaba, T. M., and Pon, L. A. (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996–2004.PubMedCrossRefGoogle Scholar
  25. 25.
    Okamoto, K., Perlman, P. S., and Butow, R. A. (1998) The sorting of mitochondrial DNA and mitochondrial proteins in zygotes: preferential transmission of mitochondrial DNA to the medial bud. J. Cell Biol. 142, 613–623.PubMedCrossRefGoogle Scholar
  26. 26.
    Mozdy, A. D., McCaffery, J. M., and Shaw, J. M. (2001) Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151, 367–380.CrossRefGoogle Scholar
  27. 27.
    Nunnari, J., Wong, E. D., Meeusen, S., and Wagner, J. A. (2002) Studying the behavior of mitochondria. Methods Enzymol. 351, 381–393.PubMedCrossRefGoogle Scholar
  28. 28.
    Westermann, B. and Neupert, W. (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16, 1421–1427.PubMedCrossRefGoogle Scholar
  29. 29.
    Longtine, M. S., McKenzie, A., III, Demarini, D. J., et al. (1998) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961.PubMedCrossRefGoogle Scholar
  30. 30.
    Rodrigues, F., van Hemert, M., Steensma, H. Y., Corte-Real, M., and Leao, C. (2001) Red fluorescent protein (DsRed) as a reporter in Saccharomyces cerevisiae. J. Bacteriol. 183, 3791–3794.PubMedCrossRefGoogle Scholar
  31. 31.
    Janke, C., Magiera, M. M., Rathfelder, N., et al. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.PubMedCrossRefGoogle Scholar
  32. 32.
    Sheff, M. A. and Thorn, K. S. (2004) Optimized cassettes for fluorescent protein tagging in Saccharomyces cerevisiae. Yeast 21, 661–670.PubMedCrossRefGoogle Scholar
  33. 33.
    Gauss, R., Trautwein, M., Sommer, T., and Spang, A. (2005) New modules for the repeated internal and N-terminal epitope tagging of genes in Saccharomyces cerevisiae. Yeast 22, 1–12.PubMedCrossRefGoogle Scholar
  34. 34.
    Roeder, A. D., Hermann., G. J., Keegan, B. R., Thatcher, S. A., and Shaw, J. M. (1998) Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol. Biol. Cell. 9, 917–930.PubMedGoogle Scholar
  35. 35.
    Mihara, K. and Sato, R. (1985) Molecular cloning and sequencing of cDNA for yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure. EMBO J. 4, 769–774.PubMedGoogle Scholar
  36. 36.
    Taanman, J. W. and Capaldi, R. A. (1993) Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. Isolation and characterization of the nuclear-coded gene. J. Biol. Chem. 268, 18,754–18,761.PubMedGoogle Scholar
  37. 37.
    Poot, M., Zhang, Y. Z., Kramer, J. A., et al. (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem. Cytochem. 44, 1363–1372.PubMedGoogle Scholar
  38. 38.
    McConnell, S. J., Stewart, L. C., Talin, A., and Yaffe, M. P. (1990) Temperature-sensitive yeast mutants defective in mitochondrial inheritance. J. Cell Biol. 3, 967–976.CrossRefGoogle Scholar
  39. 39.
    Diffley, J. F. and Stillman, B. (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc. Natl. Acad. Sci. U. S. A. 88, 7864–7868.PubMedCrossRefGoogle Scholar
  40. 40.
    Skowronek, P., Krummeck, G., Haferkamp, O., and Rodel, G. (1990) Flow cytometry as a tool to discriminate respiratory-competent and respiratory-deficient yeast cells. Curr. Genet. 18, 265–267.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Theresa C. Swayne
    • 1
  • Anna C. Gay
    • 1
  • Liza A. Pon
    • 1
  1. 1.Department of Anatomy and Cell Biology, College of Physicians and SurgeonsColumbia UniversityNew York

Personalised recommendations