Advertisement

Drosophila melanogaster as a Model System to Study Mitochondrial Biology

  • Miguel Angel Fernández-Moreno
  • Carol L. Farr
  • Laurie S. Kaguni
  • Rafael Garesse
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)

Abstract

Mitochondria play an essential role in cellular homeostasis. Although in the last few decades our knowledge of mitochondria has increased substantially, the mechanisms involved in the control of mitochondrial biogenesis remain largely unknown. The powerful genetics of Drosophila combined with a wealth of available cell and molecular biology techniques, make this organism an excellent system to study mitochondria. In this chapter we will review briefly the opportunities that Drosophila offers as a model system and describe in detail how to purify mitochondria from Drosophila and to perform the analysis of developmental gene expression using in situ hybridization.

Key Words

Drosophila gene expression molecular localization 

References

  1. 1.
    Adams, M. D., Celniker, S. E., Holt, R. A., et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185–2195.CrossRefPubMedGoogle Scholar
  2. 2.
    Garesse, R. (1988) Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations. Genetics 118, 649–663.PubMedGoogle Scholar
  3. 3.
    Lewis, D. L., Farr, C. L., and Kaguni, L. S. (1995) Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons. Insect Mol. Biol. 4, 263–267.CrossRefPubMedGoogle Scholar
  4. 4.
    Tripoli, G., D’Elia, D., Barsanti, P., and Caggese, C. (2005) Comparison of the oxidative phosphorylation (OXPHOS) nuclear genes in the genomes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. Genome Biol. 6, R11CrossRefPubMedGoogle Scholar
  5. 5.
    Gabaldon, T. and Huynen, M. A. (2004) Shaping the mitochondrial proteome. Biochim. Biophys. Acta 1659, 212–220.CrossRefPubMedGoogle Scholar
  6. 6.
    Bellen, H. J., Levis, R. W., Liao, G., et al. (2004) The BDGP Gene Disruption Project: single transposon insertions associated with 40% of Drosophila genes. Genetics 167, 761–781.CrossRefPubMedGoogle Scholar
  7. 7.
    Rong, Y. S., and Golic, K. G. (2000) Gene targeting by homologous recombination in Drosophila. Science 288, 2013–2018.CrossRefPubMedGoogle Scholar
  8. 8.
    Sardiello, M., Tripoli, G., Romito, A., et al. (2005) Energy biogenesis: one key for coordinating two genomes. Trends Genet. 21, 12–16.CrossRefPubMedGoogle Scholar
  9. 9.
    Brakel, C. L. and Blumenthal, A. B. (1977) Multiple forms of Drosophila embryo DNA polymerase: evidence for proteolytic conversion. Biochemistry 16, 3137–3143.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Miguel Angel Fernández-Moreno
    • 1
  • Carol L. Farr
    • 2
  • Laurie S. Kaguni
    • 2
  • Rafael Garesse
    • 1
  1. 1.Departamento de Bioquímica, Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC-UAM, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  2. 2.Department of Biochemistry and Molecular BiologyMichigan State UniversityEast Lansing

Personalised recommendations