Skip to main content
Book cover

Mitochondria pp 343–360Cite as

Studying Proteolysis Within Mitochondria

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Mitochondria are dynamic organelles with activities that adjust to altering physiological conditions and variable metabolic demands. A conserved proteolytic system present within the organelle exerts essential functions during the biogenesis of mitochondria and ensures the maintenance of organellar activities under varying conditions. Proteases dependent on adenosine triphosphate, in concert with oligopeptidases, degrade nonassembled or damaged proteins in various subcompartments of mitochondria, preventing their accumulation and possibly deleterious effects on mitochondrial functions. Although an increasing number of mitochondrial peptidases are characterized and functionally linked to diverse cellular processes, only limited information is available on the stability of the mitochondrial proteome and the turnover rates of individual proteins. We describe experimental approaches in the yeast Saccharomyces cerevisiae and in mice, allowing analysis of the proteolytic breakdown of mitochondrial proteins individually or on a proteomewide scale.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gakh, O., Cavadini, P., and Isaya, G. (2002) Mitochondrial processing peptidases. Biochim. Biophys. Acta 1592, 63–77.

    Article  CAS  PubMed  Google Scholar 

  2. Esser, K., Tursun, B., Ingenhoven, M., Michaelis, G., and Pratje, E. (2002) A novel two-step mechanism for removal of a mitochondrial signal sequence involves the m-AAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 323, 835–843.

    Article  CAS  PubMed  Google Scholar 

  3. Herlan, M., Vogel, F., Bornhövd, C., Neupert, W., and Reichert, A.S. (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27,781–27,788.

    Article  CAS  PubMed  Google Scholar 

  4. McQuibban, G. A., Saurya, S., and Freeman, M. (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541.

    Article  CAS  PubMed  Google Scholar 

  5. Van Dyck, L. and Langer, T. (1999) ATP-dependent proteases controlling mitochondrial function in the yeast Saccharomyces cerevisiae. Cell Mol. Life Sci. 55, 825–842.

    Article  Google Scholar 

  6. Bota, D. A. and Davies, K. J. A. (2001) Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 1, 33–49.

    Article  CAS  PubMed  Google Scholar 

  7. Young, L., Leonhard, K., Tatsuta, T., Trowsdale, J., and Langer, T. (2001) Role of the ABC transporter Mdl1 in peptide export from mitochondria. Science 291, 2135–2138.

    Article  CAS  PubMed  Google Scholar 

  8. Augustin, S., Nolden, M., Müller, S., Hardt, O., Arnold, I., and Langer, T. (2005) Characterization of peptides released from mitochondria: evidence for constant proteolysis and peptide efflux. J. Biol. Chem. 280, 2691–2699.

    Article  CAS  PubMed  Google Scholar 

  9. Kambacheld, M., Augustin, S., Tatsuta, T., Müller, S., and Langer, T. (2005) Role of the novel metallopeptidase MOP112 and saccharolysin for the complete degradation of proteins residing in different subcompartments of mitochondria. J. Biol. Chem. 280, 20,132–20,139.

    Article  CAS  PubMed  Google Scholar 

  10. Daum, G., Gasser, S. M., and Schatz, G. (1982) Import of proteins into mitochondria. Energy-dependent, two-step processing of the intermembrane space enzyme cytochrome b2 by isolated yeast mitochondria. J. Biol. Chem. 257, 13,075–13,080.

    CAS  PubMed  Google Scholar 

  11. Herrmann, J. M., Fölsch, H., Neupert, W., and Stuart, R. A. (1994) Isolation of yeast mitochondria and study of mitochondrial protein translation, in Cell Biology: A Laboratory Handbook, vol. 1 (Celis, D. E., ed.), Academic Press, San Diego, CA, pp. 538–544.

    Google Scholar 

  12. Meisinger, C., Sommer, T., and Pfanner, N. (2000) Purification of Saccharomcyes cerevisiae mitochondria devoid of microsomal and cytosolic contaminations. Anal. Biochem. 287, 339–342.

    Article  CAS  PubMed  Google Scholar 

  13. Brandt, A. (1991) Pulse labeling of yeast cells as a tool to study mitochondrial protein import. Methods Cell Biol. 34, 369–376.

    Article  CAS  PubMed  Google Scholar 

  14. Kozak, M. (1987) An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125–8148.

    Article  CAS  PubMed  Google Scholar 

  15. Black-Schaefer, C. L., McCourt, J. D., Poyton, R. O., and McKee, E. E. (1991) Mitochondrial gene expression in Saccharomyces cerevisiae. Proteolysis of nascent chains in isolated yeast mitochondria optimized for protein synthesis. Biochem. J. 274, 199–205.

    CAS  PubMed  Google Scholar 

  16. Mattiazzi, M., D’Aurelio, M., Gajewski, C. D., et al. (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29,626–29,633.

    Article  CAS  PubMed  Google Scholar 

  17. Gancedo, J. M. (1998) Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62, 334–361.

    CAS  PubMed  Google Scholar 

  18. Käser, M., Kambacheld, M., Kisters-Woike, B., and Langer, T. (2003) Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J. Biol. Chem. 278, 46,414–46,423.

    Article  PubMed  Google Scholar 

  19. Leonhard, K., Guiard, B., Pellechia, G., Tzagoloff, A., Neupert, W., and Langer, T. (2000) Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5, 629–638.

    Article  CAS  PubMed  Google Scholar 

  20. Rottgers, K., Zufall, N., Guiard, B., and Voos, W. (2002) The ClpB homolog Hsp78 is required for the efficient degradation of proteins in the mitochondrial matrix. J. Biol. Chem. 277, 45,829–45,837.

    Article  CAS  PubMed  Google Scholar 

  21. Leonhard, K., Stiegler, A., Neupert, W., and Langer, T. (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Tatsuta, T., Langer, T. (2007). Studying Proteolysis Within Mitochondria. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_25

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics