The Mitochondria of Cultured Mammalian Cells

II: Expression and Visualization of Exogenous Proteins in Fixed and Live Cells
  • Steffi Goffart
  • Peter Martinsson
  • Florence Malka
  • Manuel Rojo
  • Johannes N. Spelbrink
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)


Mitochondria are almost ubiquitous organelles in Eukaryota. They are highly dynamic and often complex structures in the cell. The mammalian mitochondrial proteome is predicted to comprise as many as 2000–2500 different proteins. Determination of the subcellular localization of any newly identified protein is one of the first steps toward unraveling its biological function. For most mitochondrial proteins, this can now be done relatively easily by cloning a complementary deoxyribonucleic acid of interest in frame with an additional sequence for a fluorescent or nonfluorescent protein tag. Transfection and subsequent visualization, either by direct fluorescence microscopy or by indirect immunofluorescence microscopy, will give the first clue to mitochondrial localization. In combination with a fluorescent “marker” dye, the mitochondrial localization can be confirmed. This chapter describes some of the methods used in determining mitochondrial protein localization, which can also be used to study dynamics of mitochondria or individual mitochondrial proteins or protein complexes.

Key Words

DsRed fluorescent microscopy GFP mammalian cell culture MitoTracker PicoGreen transfection 


  1. 1.
    Scott, S. V., Cassidy-Stone, A., Meeusen, S. L., and Nunnari, J. (2003) Staying in aerobic shape: how the structural integrity of mitochondria and mitochondrial DNA is maintained. Curr. Opin. Cell Biol. 15, 482–488.CrossRefPubMedGoogle Scholar
  2. 2.
    Margineantu, D. H., Brown, R. M., Brown, G. K., Marcus, A. H., and Capaldi, R. A. (2002) Heterogeneous distribution of pyruvate dehydrogenase in the matrix of mitochondria. Mitochondrion 1, 327–338.CrossRefPubMedGoogle Scholar
  3. 3.
    Garrido, N., Griparic, L., Jokitalo, E., Wartiovaara, J., Van Der Bliek, A. M., and Spelbrink, J. N. (2003) Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14, 1583–1596.CrossRefPubMedGoogle Scholar
  4. 4.
    Legros, F., Malka, F., Frachon, P., Lombes, A., and Rojo, M. (2004) Organization and dynamics of human mitochondrial DNA. J. Cell Sci. 117, 2653–2662.CrossRefPubMedGoogle Scholar
  5. 5.
    Satoh, M., and Kuroiwa, T. (1991) Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp. Cell Res. 196, 137–140.CrossRefPubMedGoogle Scholar
  6. 6.
    Iborra, F. J., Kimura, H., and Cook, P. R. (2004) The functional organization of mitochondrial genomes in human cells. BMC Biol. 2, 9.CrossRefPubMedGoogle Scholar
  7. 7.
    Legros, F., Lombes, A., Frachon, P., and Rojo, M. (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13, 4343–4354.CrossRefPubMedGoogle Scholar
  8. 8.
    Patterson, G. H., and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877.CrossRefPubMedGoogle Scholar
  9. 9.
    Chudakov, D. M., Verkhusha, V. V., Staroverov, D. B., Souslova, E. A., Lukyanov, S., and Lukyanov, K. A. (2004) Photoswitchable cyan fluorescent protein for protein tracking Nat. Biotechnol. 22, 1435–1439.CrossRefPubMedGoogle Scholar
  10. 10.
    Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc. Natl. Acad. Sci. U. S. A. 97, 11,984–11,989.CrossRefPubMedGoogle Scholar
  11. 11.
    Lauf, U., Lopez, P., and Falk, M. M. (2001) Expression of fluorescently tagged connexins: a novel approach to rescue function of oligomeric DsRed-tagged proteins. FEBS Lett. 498, 11–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Campbell, R. E., Tour, O., Palmer, A. E., et al. (2002) A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. U. S. A. 99, 7877–7882.CrossRefPubMedGoogle Scholar
  13. 13.
    Koehler, C. M. (2004) New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335.CrossRefPubMedGoogle Scholar
  14. 14.
    Poot, M., Zhang, Y., Kramer, J., et al. (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains J. Histochem. Cytochem. 44, 1363–1372.PubMedGoogle Scholar
  15. 15.
    Ashley, N., Harris, D., and Poulton, J. (2005) Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Exp. Cell Res. 303, 432–446.CrossRefPubMedGoogle Scholar
  16. 16.
    Pendergrass, W., Wolf, N., and Poot, M. (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61, 162–169.CrossRefPubMedGoogle Scholar
  17. 17.
    Spelbrink, J. N., Li, F. Y., Tiranti, V., et al. (2001) Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28, 223–231.CrossRefPubMedGoogle Scholar
  18. 18.
    van de Corput, M. P., van den Ouweland, J. M., Dirks, R. W., et al. (1997) Detection of mitochondrial DNA deletions in human skin fibroblasts of patients with Pearson’s syndrome by two-color fluorescence in situ hybridization. J. Histochem. Cytochem. 45, 55–61.PubMedGoogle Scholar
  19. 19.
    Margineantu, D. H., Cox, W. G., Sundell, L., et al. (2002) Cell cycle dependent morphology changes and associated mitochondrial DNA redistribution in mitochondria of human cell lines. Mitochondrion 1, 425–435.CrossRefPubMedGoogle Scholar
  20. 20.
    Sanes, J. R., Rubenstein, J. L., and Nicolas, J. F. (1986) Use of a recombinant retrovirus to study post-implantation cell lineage in mouse embryos. EMBO J. 5, 3133–3142.PubMedGoogle Scholar
  21. 21.
    Minamikawa, T., Sriratana, A., Williams, D. A., Bowser, D. N., Hill, J. S., and Nagley, P. (1999) Chloromethyl-X-rosamine (MitoTracker Red) photosensitizes mitochondria and induces apoptosis in intact human cells. J. Cell Sci. 112, 2419–2430.PubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Steffi Goffart
    • 1
  • Peter Martinsson
    • 1
  • Florence Malka
    • 2
  • Manuel Rojo
    • 2
  • Johannes N. Spelbrink
    • 1
  1. 1.FinMIT Centre of ExcellenceInstitute of Medical Technology and Tampere University Hospital, University of TampereTampereFinland
  2. 2.INSERM U582 -Institut de MyologieUniversité Pierre et Marie Curie, IFR14, Groupe Hospitalier Pitié-SalpêtrièreParis CedexFrance

Personalised recommendations