Skip to main content
Book cover

Mitochondria pp 193–206Cite as

In Vitro Analysis of the Yeast Mitochondrial RNA Polymerase

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 372))

Abstract

Understanding the details of how genetic information is expressed from the separate mitochondrial genome requires a detailed description of the properties of the mitochondrial RNA polymerase. This nuclear-encoded enzyme is necessary and sufficient for the transcription of all mitochondrially encoded genes. Mitochondria from yeast to humans use a single-polypeptide catalytic RNA polymerase related to enzymes from bacteriophage. They also require separable transcription factors necessary for initiation at promoter sequences on the mitochondrial DNA template. It has recently become possible to work with highly purified, recombinant forms of the mitochondrial RNA polymerase subunits from yeast. This chapter describes detailed protocols for working in vitro with this purified enzyme in transcription reactions. These assays are critical for elucidating the nature of a mitochondrial promoter and for understanding how the mitochondrial RNA polymerase recognizes these DNA sequences and selectively initiates the transcription cycle, resulting in discrete transcripts.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Shadel, G. S. (2004) Coupling the mitochondrial transcription machinery to human disease. Trends Genet. 20, 513–519.

    Article  CAS  PubMed  Google Scholar 

  2. Trifunovic, A., Wredenberg, A., Falkenberg, M., et al. (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417–423.

    Article  CAS  PubMed  Google Scholar 

  3. Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science 283, 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  4. Masters, B. S., Stohl, L. L., and Clayton, D. A. (1987) Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7. Cell 51, 89–99.

    Article  CAS  PubMed  Google Scholar 

  5. Schinkel, A. H., Koerkamp, M. J., Touw, E. P., and Tabak, H. F. (1987) Specificity factor of yeast mitochondrial RNA polymerase. Purification and interaction with core RNA polymerase. J. Biol. Chem. 262, 12,785–12,791.

    CAS  PubMed  Google Scholar 

  6. Gaspari, M., Larsson, N. G., and Gustafsson, C. M. (2004) The transcription machinery in mammalian mitochondria. Biochim. Biophys. Acta 1659, 148–152.

    Article  CAS  PubMed  Google Scholar 

  7. Mangus, D. A., Jang, S. H., and Jaehning, J. A. (1994) Release of the yeast mitochondrial RNA polymerase specificity factor from transcription complexes. J. Biol. Chem. 269, 26,568–26,574.

    CAS  PubMed  Google Scholar 

  8. Matsunaga, M. and Jaehning, J. A. (2004) Intrinsic promoter recognition by a “core” RNA polymerase. J. Biol. Chem. 279, 44,239–44,242.

    Article  CAS  PubMed  Google Scholar 

  9. Matsushima, Y., Adan, C., Garesse, R., and Kaguni, L. S. (2005) Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells. J. Biol. Chem. 280, 16,815–16,820.

    Article  CAS  PubMed  Google Scholar 

  10. Matsushima, Y., Garesse, R., and Kaguni, L. S. (2004) Drosophila mitochondrial transcription factor B2 regulates mitochondrial DNA copy number and transcription in Schneider cells. J. Biol. Chem. 279, 26,900–26,905.

    Article  CAS  PubMed  Google Scholar 

  11. McCulloch, V., Seidel-Rogol, B. L., and Shadel, G. S. (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol. Cell Biol. 22, 1116–1125.

    Article  CAS  PubMed  Google Scholar 

  12. Rantanen, A., Gaspari, M., Falkenberg, M., Gustafsson, C. M., and Larsson, N. G. (2003) Characterization of the mouse genes for mitochondrial transcription factors B1 and B2. Mamm. Genome 14, 1–6.

    Article  CAS  PubMed  Google Scholar 

  13. Falkenberg, M., Gaspari, M., Rantanen, A., Trifunovic, A., Larsson, N. G., and Gustafsson, C. M. (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat. Genet. 31, 289–294.

    Article  CAS  PubMed  Google Scholar 

  14. McCulloch, V. and Shadel, G. S. (2003) Human mitochondrial transcription factor B1 interacts with the C-terminal activation region of h-mtTFA and stimulates transcription independently of its RNA methyltransferase activity. Mol. Cell Biol. 23, 5816–5824.

    Article  CAS  PubMed  Google Scholar 

  15. Larsson, N. G., Wang, J., Wilhelmsson, H., et al. (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat. Genet. 18, 231–236.

    Article  CAS  PubMed  Google Scholar 

  16. Diffley, J. F. and Stillman, B. (1991) A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc. Natl. Acad. Sci. USA 88, 7864–7868.

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman, B. A., Newman, S. M., Hallberg, R. L., Slaughter, C. A., Perlman, P. S., and Butow, R. A. (2000) In organello formaldehyde crosslinking of proteins to mtDNA: identification of bifunctional proteins. Proc. Natl. Acad. Sci. USA 97, 7772–7777.

    Article  CAS  PubMed  Google Scholar 

  18. Dairaghi, D. J., Shadel, G. S., and Clayton, D. A. (1995) Addition of a 29 residue carboxyl-terminal tail converts a simple HMG box-containing protein into a transcriptional activator. J. Mol. Biol. 249, 11–28.

    Article  CAS  PubMed  Google Scholar 

  19. Matsunaga, M., Jang, S. H., and Jaehning, J. A. (2004) Expression and purification of wild type and mutant forms of the yeast mitochondrial core RNA polymerase, Rpo41. Protein Expr. Purif. 35, 126–130.

    Article  CAS  PubMed  Google Scholar 

  20. Mangus, D. A. and Jaehning, J. A. (1996) Transcription in vitro with Saccharomyces cerevisiae mitochondrial RNA-polymerase. Meth. Enzymol. 264, 57–66.

    Article  CAS  PubMed  Google Scholar 

  21. Gaspari, M., Falkenberg, M., Larsson, N. G., and Gustafsson, C. M. (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 23, 4606–4614.

    Article  CAS  PubMed  Google Scholar 

  22. McClure, W. R., Cech, C. L., and Johnston, D. E. (1978) A steady state assay for the RNA polymerase initiation reaction. J. Biol. Chem. 253, 8941–8948.

    CAS  PubMed  Google Scholar 

  23. Hsu, L. M., Vo, N. V., Kane, C. M., and Chamberlin, M. J. (2003) In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters. Biochemistry 42, 3777–3786.

    Article  CAS  PubMed  Google Scholar 

  24. Biswas, T. K., Ticho, B., and Getz, G. S. (1987) In vitro characterization of the yeast mitochondrial promoter using single-base substitution mutants. J. Biol. Chem. 262, 13,690–13,696.

    CAS  PubMed  Google Scholar 

  25. Christianson, T. and Rabinowitz, M. (1983) Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase. J. Biol. Chem. 258, 14,025–14,033.

    CAS  PubMed  Google Scholar 

  26. Tracy, R. L., and Stern, D. B. (1995) Mitochondrial transcription initiation: promoter structures and RNA polymerases. Curr. Genet. 28, 205–216.

    Article  CAS  PubMed  Google Scholar 

  27. Stohl, L. L. and Clayton, D. A. (1992) Saccharomyces cerevisiae contains an RNase MRP that cleaves at a conserved mitochondrial RNA sequence implicated in replication priming. Mol. Cell Biol. 12, 2561–2569.

    CAS  PubMed  Google Scholar 

  28. Mueller, D. M., and Getz, G. S. (1986) Transcriptional regulation of the mitochondrial genome of yeast Saccharomyces cerevisiae. J. Biol. Chem. 261, 11,756–11,764.

    CAS  PubMed  Google Scholar 

  29. Biswas, T. K. and Getz, G. S. (1986) Nucleotides flanking the promoter sequence influence the transcription of the yeast mitochondrial gene coding for ATPase subunit 9. Proc. Natl. Acad. Sci. USA 83, 270–274.

    Article  CAS  PubMed  Google Scholar 

  30. Karlok, M. A., Jang, S. H., and Jaehning, J. A. (2002) Mutations in the yeast mitochondrial RNA polymerase specificity factor, Mtf1, verify an essential role in promoter utilization. J. Biol. Chem. 277, 28,143–28,149.

    Article  CAS  PubMed  Google Scholar 

  31. Ausubel, F. M., Brent, R., Kingston, R. E., et al. (1994) Current Protocols in Molecular Biology, Vol. 1, Wiley, New York.

    Google Scholar 

  32. Biswas, T. K., Edwards, J. C., Rabinowitz, M., and Getz, G. S. (1985) Characterization of a yeast mitochondrial promoter by deletion mutagenesis. Proc. Natl. Acad. Sci. USA 82, 1954–1958.

    Article  CAS  PubMed  Google Scholar 

  33. Barker, M. M. and Gourse, R. L. (2001) Regulation of rRNA transcription correlates with nucleoside triphosphate sensing. J. Bacteriol. 183, 6315–6323.

    Article  CAS  PubMed  Google Scholar 

  34. deHaseth, P. L. and Helmann, J. D. (1995) Open complex formation by Escherichia coli RNA polymerase: the mechanism of polymerase-induced strand separation of double helical DNA. Mol. Microbiol. 16, 817–824.

    Article  CAS  PubMed  Google Scholar 

  35. Stano, N. M. and Patel, S. S. (2004) T7 lysozyme represses T7 RNA polymerase transcription by destabilizing the open complex during initiation. J. Biol. Chem. 279, 16,136–16,143.

    Article  CAS  PubMed  Google Scholar 

  36. Bandwar, R. P. and Patel, S. S. (2002) The energetics of consensus promoter opening by T7 RNA polymerase. J. Mol. Biol. 324, 63–72.

    Article  CAS  PubMed  Google Scholar 

  37. Stano, N. M., Levin, M. K., and Patel, S. S. (2002) The +2 NTP binding drives open complex formation in T7 RNA polymerase. J. Biol. Chem. 277, 37,292–37,300.

    Article  CAS  PubMed  Google Scholar 

  38. Bandwar, R. P., Jia, Y., Stano, N. M., and Patel, S. S. (2002) Kinetic and thermodynamic basis of promoter strength: multiple steps of transcription initiation by T7 RNA polymerase are modulated by the promoter sequence. Biochemistry 41, 3586–3595.

    Article  CAS  PubMed  Google Scholar 

  39. Lew, C. M. and Gralla, J. D. (2004) Nucleotide-dependent isomerization of Escherichia coli RNA polymerase. Biochemistry 43, 12,660–12,666.

    Article  CAS  PubMed  Google Scholar 

  40. Nierman, W. C. and Chamberlin, M. J. (1979) Studies of RNA chain initiation by Escherichia coli RNA polymerase bound to T7 DNA. Direct analysis of the kinetics and extent of RNA chain initiation at T7 promoter A1. J. Biol. Chem. 254, 7921–7926.

    CAS  PubMed  Google Scholar 

  41. Biswas, T. K. and Getz, G. S. (1990) Regulation of transcriptional initiation in yeast mitochondria. J. Biol. Chem. 265, 19,053–19,059.

    CAS  PubMed  Google Scholar 

  42. Biswas, T. K. (1990) Control of mitochondrial gene expression in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 87, 9338–9342.

    Article  CAS  PubMed  Google Scholar 

  43. Gaal, T., Bartlett, M. S., Ross, W., Turnbough, C. L., Jr., and Gourse, R. L. (1997) Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278, 2092–2097.

    Article  CAS  PubMed  Google Scholar 

  44. Bartlett, M. S., Gaal, T., Ross, W., and Gourse, R. L. (1998) RNA polymerase mutants that destabilize RNA polymerase-promoter complexes alter NTP-sensing by rrn P1 promoters. J. Mol. Biol. 279, 331–345.

    Article  CAS  PubMed  Google Scholar 

  45. Hsu, L. M. (2002) Promoter clearance and escape in prokaryotes. Biochim. Biophys. Acta 1577, 191–207.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Amiott, E.A., Jaehning, J.A. (2007). In Vitro Analysis of the Yeast Mitochondrial RNA Polymerase. In: Leister, D., Herrmann, J.M. (eds) Mitochondria. Methods in Molecular Biology™, vol 372. Humana Press. https://doi.org/10.1007/978-1-59745-365-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-365-3_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-667-2

  • Online ISBN: 978-1-59745-365-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics