Advertisement

Mitochondria pp 137-149 | Cite as

Chlamydomonas reinhardtii: The Model of Choice to Study Mitochondria From Unicellular Photosynthetic Organisms

  • Soledad Funes
  • Lars-Gunnar Franzén
  • Diego González-Halphen
Part of the Methods in Molecular Biology™ book series (MIMB, volume 372)

Abstract

Chlamydomonas reinhardtii is a model organism to study photosynthesis, cellular division, flagellar biogenesis, and, more recently, mitochondrial function. It has distinct advantages in comparison to higher plants because it is unicellular, haploid, and amenable to tetrad analysis, and its three genomes are subject to specific transformation. It also has the possibility to grow either photoautotrophically or heterotrophically on acetate, making the assembly of the photosynthetic machinery not essential for cell viability. Methods developed allow the isolation of C. reinhardtii mitochondria free of thylakoid contaminants. We review the general procedures used for the biochemical characterization of mitochondria from this green alga.

Key Words

Blue native polyacrylamide gel electrophoresis Chlamydomonas reinhardtii green alga import-competent mitochondria OXPHOS 

References

  1. 1.
    Saraste, M. (1999) Oxidative phosphorylation at the fin de siècle. Science 283, 1488–1493.CrossRefPubMedGoogle Scholar
  2. 2.
    Bonnefoy, N., and Fox, T. D. (2002) Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Enzymol. 350, 97–111.CrossRefPubMedGoogle Scholar
  3. 3.
    Fisher, N., Castleden, C. K., Bourges, I., Brasseur, G., Dujardin, G., and Meunier, B. (2004) Human disease-related mutations in cytochrome b studied in yeast. J. Biol. Chem. 279, 12,951–12,958.CrossRefPubMedGoogle Scholar
  4. 4.
    Herrmann, J. M., and Neupert, W. (2003) Protein insertion into the inner membrane of mitochondria. IUBMB Life 55, 219–225.CrossRefPubMedGoogle Scholar
  5. 5.
    Barrientos, A., Barros, M. H., Valnot, I., Rotig, A., Rustin, P., and Tzagoloff, A. (2002) Cytochrome oxidase in health and disease. Gene 286, 53–63.CrossRefPubMedGoogle Scholar
  6. 6.
    Jansch, L., Kruft, V., Schmitz, U. K., and Braun, H. P. (1996) New insights into the composition, molecular mass and stoichiometry of the protein complexes of plant mitochondria. Plant J. 9, 357–368.CrossRefPubMedGoogle Scholar
  7. 7.
    Eubel, H., Jansch, L., and Braun, H. P. (2003) New insights into the respiratory chain of plant mitochondria: supercomplexes and a unique composition of complex II. Plant Physiol. 133, 274–286.CrossRefPubMedGoogle Scholar
  8. 8.
    Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., and Millar, A. H. (2004) Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16, 241–256.CrossRefPubMedGoogle Scholar
  9. 9.
    Glaser, E., Sjöling, S., Tanudji, M., and Whelan, J. (1998) Mitochondrial protein import in plants-signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38, 311–338.CrossRefPubMedGoogle Scholar
  10. 10.
    Rochaix, J. D. (1995) Chlamydomonas reinhardtii as the photosynthetic yeast. Annu. Rev. Genet. 29, 209–230.CrossRefPubMedGoogle Scholar
  11. 11.
    Gray, M. W., and Boer, P. H. (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319, 135–147.CrossRefPubMedGoogle Scholar
  12. 12.
    Atteia, A. (1994) Identification of mitochondrial respiratory proteins from the green alga Chlamydomonas reinhardtii. C. R. Acad. Sci. III 317, 11–19.PubMedGoogle Scholar
  13. 13.
    Amati, B. B., Goldschmidt-Clermont, M., Wallace, C. J., and Rochaix, J. D. (1988) cDNA and deduced amino acid sequences of cytochrome c from Chlamydomonas reinhardtii: unexpected functional and phylogenetic implications. J. Mol. Evol. 28, 151–160.CrossRefPubMedGoogle Scholar
  14. 14.
    Franzén, L.-G., and Falk, G. (1992) Nucleotide sequence of cDNA clones encoding the beta subunit of the mitochondrial ATP synthase from the green alga Chlamydomonas reinhardtii: the precursor protein encoded by the cDNA contains both an N-terminal presequence and a C-terminal extension. Plant Mol. Biol. 19, 771–780.CrossRefPubMedGoogle Scholar
  15. 15.
    Atteia, A., and Franzén, L.-G. (1996) Identification, cDNA sequence and deduced amino acid sequence of the mitochondrial Rieske iron-sulfur protein from the green alga Chlamydomonas reinhardtii. Implications for protein targeting and subunit interaction. Eur. J. Biochem. 237, 792–799.CrossRefPubMedGoogle Scholar
  16. 16.
    Nurani, G., and Franzén, L.-G. (1996) Isolation and characterisation of the mitochondrial ATP synthase from Chlamydomonas reinhardtii. cDNA sequence and deduced protein sequence of the a subunit. Plant Mol. Biol. 31, 1105–1116.CrossRefPubMedGoogle Scholar
  17. 17.
    Pérez-Martínez, X., Vázquez-Acevedo, M., Tolkunova, E., et al. (2000) Unusual location of a mitochondrial gene. Subunit III of cytochrome c oxidase is encoded in the nucleus of chlamydomonad algae. J. Biol. Chem. 275, 30,144–30,152.CrossRefPubMedGoogle Scholar
  18. 18.
    Pérez-Martínez, X., Antaramian, A., Vázquez-Acevedo, M., et al. (2001) Subunit II of cytochrome c oxidase in chlamydomonad algae is a heterodimer encoded by two independent nuclear genes. J. Biol. Chem. 276, 11,302–11,309.CrossRefPubMedGoogle Scholar
  19. 19.
    Dinant, M., Baurain, D., Coosemans, N., Joris, B., and Matagne, R. F. (2001) Characterization of two genes encoding the mitochondrial alternative oxidase in Chlamydomonas reinhardtii. Curr. Genet. 39, 101–108.CrossRefPubMedGoogle Scholar
  20. 20.
    Funes, S., Davidson, E., Claros, M. G., et al. (2002) The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J. Biol. Chem. 277, 6051–6058.CrossRefPubMedGoogle Scholar
  21. 21.
    Atteia, A., van Lis, R., Wetterskog, D., et al. (2003) Structure, organization and expression of the genes encoding mitochondrial cytochrome c 1 and the Rieske iron-sulfur protein in Chlamydomonas reinhardtii. Mol. Genet. Genomics 268, 637–644.PubMedGoogle Scholar
  22. 22.
    Eriksson, M., Gardeström, P., and Samuelsson, G. (1995) Isolation, purification, and characterization of mitochondria from Chlamydomonas reinhardtii. Plant Physiol. 107, 479–483.PubMedGoogle Scholar
  23. 23.
    Harris, E. H. (1989) The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use, Academic Press, San Diego, CA.Google Scholar
  24. 24.
    Matagne, R. F., Michel-Wolwertz, M. R., Munaut C., Duyckaerts, C., and Sluse, F. (1989) Induction and characterization of mitochondrial DNA mutants in Chlamydomonas reinhardtii. J. Cell Biol. 108, 1221–1226.CrossRefPubMedGoogle Scholar
  25. 25.
    Remacle, C., Duby, F., Cardol, P., and Matagne, R. F. (2001) Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii. Biochem. Soc. Trans. 29, 442–446.CrossRefPubMedGoogle Scholar
  26. 26.
    van Lis, R., Atteia, A., Mendoza-Hernández, G., and González-Halphen, D. (2003) Identification of novel mitochondrial protein components of Chlamydomonas reinhardtii. A proteomic approach. Plant Physiol. 132, 318–330.CrossRefPubMedGoogle Scholar
  27. 27.
    Cardol, P., Vanrobaeys, F., Devreese, B., Van Beeumen, J., Matagne, R., and Remacle, C. (2004) Higher plant-like subunit composition of the mitochondrial complex I from Chlamydomonas reinhardtii: 31 conserved components among eukaryotes. Biochim. Biophys. Acta 1658, 212–214.CrossRefPubMedGoogle Scholar
  28. 28.
    Shrager, J., Hauser, C., Chang, C. W., et al. (2003) Chlamydomonas reinhardtii genome project: a guide to the generation and use of the cDNA information. Plant Physiol. 131, 401–408.CrossRefPubMedGoogle Scholar
  29. 29.
    Cardol, P., González-Halphen, D., Reyes-Prieto, A., Baurain, D., Matagne, R. F., and Remacle, C. (2005) The mitochondrial oxidative phosphorylation proteome of Chlamydomonas reinhardtii deduced from the Genome Sequencing Project. Plant Physiol. 137, 447–459.CrossRefPubMedGoogle Scholar
  30. 30.
    Bennoun, P., Atteia, A., Pierre, Y., and Delosme, M. (1995) Etiolated cells of Chlamydomonas reinhardtii: a choice material to study mitochondrial respiratory complexes. Proc. Natl. Acad. Sci. USA 92, 10,202–10,206.CrossRefPubMedGoogle Scholar
  31. 31.
    Schägger, H. (1995) Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes. Methods Enzymol. 260, 190–203.CrossRefPubMedGoogle Scholar
  32. 32.
    Nurani, G., Eriksson, M., Knorpp, C., Glaser, E., and Franzén, L.-G. (1997) Homologous and heterologous protein import into mitochondria isolated from the green alga Chlamydomonas reinhardtii. Plant Mol. Biol. 35, 973–980.CrossRefPubMedGoogle Scholar
  33. 33.
    Whelan, J., Knorpp, C., and Glaser, E. (1990) Sorting of precursor proteins between isolated leaf mitochondria and chloroplasts. Plant Mol. Biol. 14, 977–982.CrossRefPubMedGoogle Scholar
  34. 34.
    Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.CrossRefPubMedGoogle Scholar
  35. 35.
    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol. 24, 1–15.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Soledad Funes
    • 1
  • Lars-Gunnar Franzén
    • 2
  • Diego González-Halphen
    • 3
  1. 1.Institut für Physiologische ChemieLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.School of Business and Engineering, NaturrumUniversity of HalmstadHalmstadSweden
  3. 3.Departamento de Genética Molecular, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoD.F., México

Personalised recommendations