Measurement of 8-Iso-Prostaglandin F in Biological Fluids as a Measure of Lipid Peroxidation

  • Stefania Tacconelli
  • Marta L. Capone
  • Paola Patrignani
Part of the Methods in Molecular Biology book series (MIMB, volume 644)


Several lines of evidence suggest that reactive oxygen species are implicated in human disease, including atherosclerosis, hypertension, and restenosis after angioplasty. The measurement of F2-isoprostanes (F2-iPs), formed nonenzymatically through free radical catalyzed attack on esterified arachidonate, provides a reliable tool for identifying populations with enhanced rates of lipid peroxidation. Among F2-isoPs, 8-iso-PGF (also referred to IPF-III) and IPF-VI are the most frequently measured in biological fluids. A variety of methods have been proposed to measure F2-isoprostanes in urine and plasma. Mass spectrometry has been developed for the measurement of both F2-isoprostanes but its use is limited as it is time-consuming and highly expensive. We have developed validated enzyme immunoassay (EIA) and radioimmunoassay (RIA) techniques using highly specific antisera for the measurement of 8-iso-PGF. In contrast, the commercially available immunoassay kits are limited for their poor specificity. The measurement of specific isoprostanes, such as 8-iso-PGF, in urine is a reliable, noninvasive index of lipid peroxidation that is of valuable help in dose-finding studies of natural and synthetic antioxidant agents.

Key words

Lipid peroxidation 8-Iso-PGF Gas chromatography/mass spectrometry (GC/MS) Radioimmunoassays Enzymatic immunoassay 


  1. 1.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part I: basic mechanisms and in vivo monitoring of ROS. Circulation 108:1912–1916CrossRefPubMedGoogle Scholar
  2. 2.
    Griendling KK, FitzGerald GA (2003) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108:2034–2040CrossRefPubMedGoogle Scholar
  3. 3.
    Lorch S, Lightfoot R, Ohshima H, Virag L, Chen Q, Hertkorn C, Weiss M, Souza J, Ischiropoulos H, Yermilov V, Pignatelli B, Masuda M, Szabo C (2002) Detection of peroxynitrite-induced protein and DNA modifications. Methods Mol Biol 196:247–275PubMedGoogle Scholar
  4. 4.
    Roberts LJ, Morrow JD (2002) Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Cell Mol Life Sci 59:808–820CrossRefPubMedGoogle Scholar
  5. 5.
    Patrono C, FitzGerald GA (1997) Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Arterioscler Thromb Vasc Biol 17:2309–2315PubMedGoogle Scholar
  6. 6.
    Rokach J, Khanapure SP, Hwang SW, Adiyaman M, Lawson JA, FitzGerald GA (1997) Nomenclature of isoprostanes: a proposal. Prostaglandins 54:853–873CrossRefPubMedGoogle Scholar
  7. 7.
    Patrignani P, Tacconelli S (2005) Isoprostanes and other markers of peroxidation in atherosclerosis. Biomarkers 10:S24–S29CrossRefPubMedGoogle Scholar
  8. 8.
    Pratico D, Barry OP, Lawson JA, Adiyaman M, Hwang SW, Khanapure SP, Iuliano L, Rokach J, FitzGerald GA (1998) IPF2alpha-I: an index of lipid peroxidation in humans. Proc Natl Acad Sci U S A 95(7):3449–3454CrossRefPubMedGoogle Scholar
  9. 9.
    Pratico D, Lawson JA, FitzGerald GA (1995) Cyclooxygenase-dependent formation of the isoprostane, 8-epi prostaglandin F2 alpha. J Biol Chem 270:9800–9808CrossRefPubMedGoogle Scholar
  10. 10.
    Patrignani P, Santini G, Panara MR, Sciulli MG, Greco A, Rotondo MT, di Giamberardino M, Maclouf J, Ciabattoni G, Patrono C (1996) Induction of prostaglandin endoperoxide synthase-2 in human monocytes associated with cyclo-oxygenase-dependent F2-isoprostane formation. Br J Pharmacol 118:1285–1293PubMedGoogle Scholar
  11. 11.
    Kadiiska MB, Gladen BC, Baird DD, Germolec D, Graham LB, Parker CE, Nyska A et al (2005) Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic Biol Med 38:698–710CrossRefPubMedGoogle Scholar
  12. 12.
    Pratico D, Smyth EM, Violi F, FitzGerald GA (1996) Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms. J Biol Chem 271(25):14916–14924CrossRefPubMedGoogle Scholar
  13. 13.
    Minuz P, Andrioli G, Degan M, Gaino S, Ortolani R, Tommasoli R, Zuliani V, Lechi A, Lechi C (1998) The F2-isoprostane 8-epiprostaglandin F2alpha increases platelet adhesion and reduces the antiadhesive and antiaggregatory effects of NO. Arterioscler Thromb Vasc Biol 18(8):1248–1256PubMedGoogle Scholar
  14. 14.
    Audoly LP, Rocca B, Fabre JE, Koller BH, Thomas D, Loeb AL, Coffman TM, FitzGerald GA (2000) Cardiovascular responses to the isoprostanes iPF(2alpha)-III and iPE(2)-III are mediated via the thromboxane A(2) receptor in vivo. Circulation 101:2833–2840PubMedGoogle Scholar
  15. 15.
    Leitinger N, Huber J, Rizza C, Mechtcheriakova D, Bochkov V, Koshelnick Y, Berliner JA et al (2001) The isoprostane 8-iso-PGF stimulates endothelial cells to bind monocytes: differences from thromboxane-mediated endothelial activation. FASEB J 15:1254–1256PubMedGoogle Scholar
  16. 16.
    Davi G, Falco A, Patrono C (2004) Determinants of F2-isoprostane biosynthesis and inhibition in man. Chem Phys Lipids 128:149–163CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts LJ II, Moore KP, Zackert WE, Oates JA, Morrow JD (1996) Identification of the major urinary metabolite of the F2-isoprostane 8-iso-prostaglandin F2alpha in humans. J Biol Chem 271(34):20617–20620CrossRefPubMedGoogle Scholar
  18. 18.
    Hou X, Roberts LJ II, Taber DF, Morrow JD, Kanai K, Gobeil F Jr, Beauchamp MH, Bernier SG, Lepage G, Varma DR, Chemtob S (2001) 2, 3-Dinor-5, 6-dihydro-15-F(2t)-isoprostane: a bioactive prostanoid metabolite. Am J Physiol Regul Integr Comp Physiol 281:391–400Google Scholar
  19. 19.
    Li H, Lawson JA, Reilly M, Adiyaman M, Hwang SW, Rokach J, FitzGerald GA (1999) Quantitative high performance liquid chromatography/tandem mass spectrometric analysis of the four classes of F(2)-isoprostanes in human urine. Proc Natl Acad Sci U S A 96:13381–13386CrossRefPubMedGoogle Scholar
  20. 20.
    Ciabattoni G (1987) Production of antisera by conventional techniques. In: Patrono C, Peskar BA (eds) Radioimmunoassay in basic and clinical pharmacology, handbook of experimentel pharmacology, vol 82. Springer-Verlag, Berlin, pp 23–68Google Scholar
  21. 21.
    Wang Z, Ciabattoni G, Creminon C, Lawson J, Fitzgerald GA, Patrono C, Maclouf J (1995) Immunological characterization of urinary 8-epi-prostaglandin F2 alpha excretion in man. JPET 275:94–100Google Scholar
  22. 22.
    Pradelles P, Gıssi J, Mıcwur J (1985) Enzyme immunoassay of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay. Anal Chem 57:1170–1173CrossRefPubMedGoogle Scholar
  23. 23.
    Lellouche F, Fradin A, Fitzgerald G, Maclouf J (1990) Enzyme immunoassay measurement of the urinary metabolites of thromboxane A2 and prostacyclin. Prostaglandins 40:297–310CrossRefPubMedGoogle Scholar
  24. 24.
    Catella F, FitzGerald GA (1987) Paired analysis of urinary thromboxane B2 metabolites in humans. Thromb Res 47:647–656CrossRefPubMedGoogle Scholar
  25. 25.
    Pickett WC, Murphy RC (1981) Enzymatic preparation of carboxyl oxygen-l8 labeled prostaglandin F2 alpha and utility for quantitative mass spectrometry. Anal Biochem 111:115–121CrossRefPubMedGoogle Scholar
  26. 26.
    Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ II (1990) A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A 87:9383–9387CrossRefPubMedGoogle Scholar
  27. 27.
    Milne GL, Sanchez SC, Musiek ES, Morrow JD (2007) Quantification of F2-isoprostanes as a biomarker of oxidative stress. Nat Protoc 2(1):221–226CrossRefPubMedGoogle Scholar
  28. 28.
    Morrow JD (2005) Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol 25:279–286CrossRefPubMedGoogle Scholar
  29. 29.
    Tsikas DJ (1998) Application of gas chromatography–mass spectrometry and gas chromatography–tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. J Chromatogr B Biomed Sci Appl 717:201–245CrossRefPubMedGoogle Scholar
  30. 30.
    Proudfoot J, Barden A, Mori TA, Burke V, Croft KD, Beilin LJ, Puddey IB (1999) Measurement of urinary F(2)-isoprostanes as markers of in vivo lipid peroxidation – a comparison of enzyme immunoassay with gas chromatography/mass spectrometry. Anal Biochem 272:209–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Stefania Tacconelli
    • 1
  • Marta L. Capone
    • 1
  • Paola Patrignani
    • 2
  1. 1.Department of Medicine and Center of Excellence on AgingG. d’Annunzio University School of Medicine, and G. d’Annunzio University FoundationChietiItaly
  2. 2.Sezione di Farmacologia, Dipartimento di Medicina e Scienze dell’InvecchiamentoUniversità di Chieti “G. d’Annunzio”ChietiItaly

Personalised recommendations