In Vitro Assays for Cyclooxygenase Activity and Inhibitor Characterization

Part of the Methods in Molecular Biology book series (MIMB, volume 644)

Abstract

Cyclooxygenases (COX), or Prostaglandin H Synthases (PGHS), are the target enzymes for nonsteroidal anti-inflammatory drugs (NSAIDS). The identification of two isoforms of COX nearly 20 years ago stimulated a flurry of research activity to identify novel, selective inhibitors that could provide potential benefit over existing nonselective NSAIDS. An important contribution to this discovery effort was the development of various in vitro and in vivo assays to support rapid screening of chemical libraries, characterization of inhibitory mechanism, and determination of potency and efficacy to guide follow-up medicinal chemistry efforts. Several assay methods for the in vitro evaluation of COX activity and mechanism of inhibition by test compounds will be reviewed. Each of these methods has inherent advantages and disadvantages with regard to application and the mechanistic detail provided.

Key words

Cyclooxygenase COX Prostaglandin H synthase PGH synthase PGHS Prostaglandin PGE PGG PGH Nonsteroidal anti-inflammatory drugs NSAIDs Oxygen uptake Oxygen electrode Oxygraph Peroxidase ELISA 

Abbreviations

PGHS

prostaglandin H synthase

COX

cyclooxygenase

PGs

prostaglandins

Tx

thromboxanes

NSAIDs

nonsteroidal antiinflammatory drugs

DMSO

dimethyl sulfoxide

Tris

tris(hydroxymethyl)aminomethane

TMPD

N,N,N′,N′-Tetramethyl-p-phenylenediamine dihydrochloride

CHAPS

3-((3-Cholamidopropyl)dimethylammonio)-1-propanesulfonate hydrate

References

  1. 1.
    Vane JR (1974) Mode of action of aspirin and similar compounds. In: Robinson JH, Vane JR (eds) Prostaglandin synthase inhibitors. Raven, New York, NY, pp 55–163Google Scholar
  2. 2.
    Smith WL, Marnett LJ (1991) Prostaglandin endoperoxide synthase: structure and catalysis. Biochim Biophys Acta 1083:1–17PubMedGoogle Scholar
  3. 3.
    Smith WL, Garavito RM, DeWitt DL (1996) Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 271:33157–33160CrossRefPubMedGoogle Scholar
  4. 4.
    DuBois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, van de Putte LBA, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073PubMedGoogle Scholar
  5. 5.
    Marnett LJ, Rowlinson SW, Goodwin DC, Kalgutkar AS, Lanzo CA (1999) Arachidonic acid oxygenation by COX-1 and COX-2: mechanisms of catalysis and inhibition. J Biol Chem 274:22903–22906CrossRefPubMedGoogle Scholar
  6. 6.
    Seibert K, Masferrer JL (1994) Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 4:17–23PubMedGoogle Scholar
  7. 7.
    Vane JR, Bakhe YS, Botting RM (1998) Cyclooxygenases 1 and 2. Ann Rev Phamacol Toxicol 8:97–120CrossRefGoogle Scholar
  8. 8.
    Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL (1994) Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin. J Biol Chem 269:13207–13215PubMedGoogle Scholar
  9. 9.
    Gierse JK, Hauser SD, Creely DP, Koboldt C, Rangwala SH, Isakson PC, Seibert K (1995) Expression and selective inhibition of the constitutive and inducible forms of human cyclo-oxygenase. Biochem J 305:479–484PubMedGoogle Scholar
  10. 10.
    Smith CJ, Zhang Y, Koboldt CM, Muhammad J, Zweifel BS, Shaffer A, Talley JT, Masferrer JL, Seibert K, Isakson PC (1998) Pharmacological analysis of cyclooxygenase-1 in inflammation. Proc Natl Acad Sci USA 95:13313–13318CrossRefPubMedGoogle Scholar
  11. 11.
    Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci USA 96:7563–7568CrossRefPubMedGoogle Scholar
  12. 12.
    Gans KR, Galbraith W, Roman RJ, Haber SB, Kerr JS, Schmidt WK, Smith C, Hewes WE, Ackerman NR (1990) Anti-inflammatory and safety profile of DuP 697, a novel orally effective prostaglandin synthesis inhibitor. J Pharmacol Exp Ther 254:180–187PubMedGoogle Scholar
  13. 13.
    Futaki N, Takahashi S, Yokoyama M, Aria I, Higuchi S, Otomo S (1994) NS-398, a new anti-inflammatory agent, selectively inhibits prostaglandin G/H synthase/cyclooxygenase (COX-2) activity in vitro. Prostaglandins 47:55–59CrossRefPubMedGoogle Scholar
  14. 14.
    Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Doctor S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1, 5-diarylpy­razole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3- (trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, celecoxib). J Med Chem 40:1347–1365CrossRefPubMedGoogle Scholar
  15. 15.
    Riendeau D, Percival MD, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Falgueyret J-P, Ford-Hutchinson AW, Gordon R, Greig G, Gresser M, Guay J, Kargman S, Leger S, Mancini JA, O’Neill G, Oulette M, Rodger IW, Therien M, Wang Z, Webb JK, Wong E, Xu L, Young RN, Zamboni R, Prasit P, Chan C-C (1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as a highly selective COX-2 inhibitor. Br J Pharm 121:105–117CrossRefGoogle Scholar
  16. 16.
    Chan C-C, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Leger S, Mancini J, O’Niell GP, Ouellet M, Patrick D, Percival MD, Perrier H, Prasit P, Rodger I, Tagari P, Therien M, Vickers P, Visco D, Wang Z, Webb J, Wong E, Xu L-J, Young RN, Zamboni R, Riendeau D (1999) Rofecoxib [Vioxx, MK-0966; 4-(4′-methylsulfonylphenyl)-3-phenyl-2-(5H)- furanone]: a potent and orally active cyclooxygenase-2 inhibitor: pharmacological and biochemical profiles. J Pharmacol Exp Ther 290:551–560PubMedGoogle Scholar
  17. 17.
    van der Donk WA, Tsai A-L, Kulmacz RJ (2002) The cyclooxygenase reaction mechanism. Biochemistry 41:15451–15458CrossRefPubMedGoogle Scholar
  18. 18.
    Gierse JK, Koboldt CM, Walker MC, Seibert K, Isakson PC (1999) Kinetic basis for selective inhibition of cyclo-oxygenases. Biochem J 339:607–614CrossRefPubMedGoogle Scholar
  19. 19.
    Mnick SJ, Veenhuizen AW, Monahan JB, Sheehan KCF, Lynch KR, Isakson PC, Portanova JP (1995) Characterization of a monoclonal antibody that neutralizes the activity of prostaglandin E2. J Immunol 155:4437–4444Google Scholar
  20. 20.
    Leatherbarrow RJ (1992) GraFit v4.0. Erithacus Software Ltd, Staines, UKGoogle Scholar
  21. 21.
    Rome LH, Lands WEM (1975) Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc Natl Acad Sci USA 72:4863–4865CrossRefPubMedGoogle Scholar
  22. 22.
    Kitz R, Wilson IB (1962) Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J Biol Chem 237:3245–3249PubMedGoogle Scholar
  23. 23.
    Ouellet M, Percival MD (1995) Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem J 306:247–251PubMedGoogle Scholar
  24. 24.
    Huang Z-F, Wun T-C, Broze GJ (1993) Kinetics of factor Xa inhibition by tissue factor pathway inhibitor. J Biol Chem 268:26950–26955PubMedGoogle Scholar
  25. 25.
    Robinson J, Cooper JM (1970) Method of determining oxygen concentrations in biological media, suitable for calibration of the oxygen electrode. Anal Biochem 33:390–399CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Pfizer Global Research and DevelopmentChesterfieldUSA
  2. 2.Inflammation Research, Pfizer Global Research and DevelopmentChesterfieldUSA

Personalised recommendations