Skip to main content

Inducing Cellular Senescence Using Defined Genetic Elements

  • Protocol
Biological Aging

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 371))

Abstract

Cellular senescence is generally defined as an irreversible state of G1 cell cycle arrest in which cells are refractory to growth factor stimulation. Cellular senescence can be induced through several different mechanisms. Primary mammalian cells display a finite life span, suggesting a mechanism that counts cell divisions. Those cells initially proliferate but eventually enter a state of permanent growth arrest, called replicative senescence. Erosion of telomeric DNA has emerged as a key factor in replicative senescence, which is antagonized during cell immortalization. Nevertheless, besides telomere shortening, there are other mechanisms inducing a growth arrest similar to the replicative senescencent phenotype. Oncogenic or mitogenic signals as well as DNA damage can induce such a phenotype of cellular senescence. All forms of cellular senescence share common signaling pathways and morphological features. Thereby, p53 seems to be essential for the senescence response. Many of these senescence inducing mechanisms can be experimentally recapitulated by the introduction of defined genetic elements. Replicative senescence due to telomere shortening can, for example, be induced by a dominant negative version of telomerase, premature senescence by the overexpression of oncogenic ras, or p16.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585–621.

    Article  Google Scholar 

  2. Linskens, M., Harley, C. B., West, M. D., Campisi, J., and Hayflick, L. (1995) Replicative senescence and cell death. Science 267, 17.

    Article  CAS  PubMed  Google Scholar 

  3. Campisi, J. (2000) Cancer, aging and cellular senescence. In Vivo 14, 183–188.

    CAS  PubMed  Google Scholar 

  4. McClintock, B. (1941) The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282.

    CAS  PubMed  Google Scholar 

  5. Blackburn, E. H. and Chiou, S. S. (1981) Non-nucleosomal packaging of a tandemly repeated DNA sequence at termini of extrachromosomal DNA coding for rRNA in Tetrahymena. Proc Natl Acad Sci USA 78, 2263–2267.

    Article  CAS  PubMed  Google Scholar 

  6. Harley, C. B., Futcher, A. B., and Greider, W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.

    Article  CAS  PubMed  Google Scholar 

  7. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., and Harley, C. B. (1992) Telomere end-replication problem and cell aging. J. Mol. Biol. 225, 951–960.

    Article  CAS  PubMed  Google Scholar 

  8. Bodnar, A. G., Ouellette, M., Frolkis, M., et al. (1998) Extension of life span by introduction of telomerase into normal human cells. Science 279, 349–352.

    Article  CAS  PubMed  Google Scholar 

  9. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D., and Lowe, S. W. (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602.

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, J., Woods, D., McMahon, M., and Bishop, J. M. (1998) Senescence of human fibroblasts induced by oncogenic raf. Genes Dev. 12, 2997–3007.

    Article  CAS  PubMed  Google Scholar 

  11. Lin, A. W., Barradas, M., Stone, J. C., van Aelst, L., Serrano, M., and Lowe, S. W. (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev. 12, 3008–3019.

    Article  CAS  PubMed  Google Scholar 

  12. Dimri, G. P., Itahana, K., Acosta, M., and Campisi, J. (2000) Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14/ARF tumor suppressor. Mol. Cell. Biol. 20, 273–285.

    Article  CAS  PubMed  Google Scholar 

  13. McConnell, B. B., Starborg, M., Brookes, S., and Peters, G. (1998) Inhibitors of cyclindependent kinases induce features of replicative senescence in early passage human diploid fibroblasts. Curr. Biol. 8, 351.

    Article  CAS  PubMed  Google Scholar 

  14. Ferbeyre, G., de Stanchina, E., Querido, E., Baptiste, N., Prives, C., and Lowe, S. W. (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev. 14, 2015–2027.

    CAS  PubMed  Google Scholar 

  15. Sherr, J. (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12, 2984–2991.

    Article  CAS  PubMed  Google Scholar 

  16. Dirac, A. M. and Bernards R. (2003) Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem. 278(14), 11,731–11,734.

    Article  CAS  PubMed  Google Scholar 

  17. Harada, H., Nakagawa, H., Oyama, K., et al. (2003) Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Mol. Cancer Res. 1(10), 729–738.

    CAS  PubMed  Google Scholar 

  18. Linskens, M. H. K., Feng, J., Andrews, W. H., et al. (1995) Cataloging altered gene expression in young and senescent cells using enhanced differential display. Nucleic Acids Res. 23, 3244–3251.

    Article  CAS  PubMed  Google Scholar 

  19. Sherwood, S. W., Rush, D., Ellsworth, J. L., and Schimke, R. T. (1988) Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. Proc. Natl. Acad. Sci. USA 85, 9086–9090.

    Article  CAS  PubMed  Google Scholar 

  20. Shelton, D. N., Chang, E., Whittier, P. S., Choi, D., and Funk, W. D. (1999) Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945.

    Article  CAS  PubMed  Google Scholar 

  21. Dimri, G. P., Lee, X., Basile, G., et al. (1995) A novel biomarker identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl Acad. Sci. USA 92, 9363–9367.

    Article  CAS  PubMed  Google Scholar 

  22. Goldstein, S. (1990) Replicative senescence: the human fibroblast comes of age. Science 249, 1129–1133.

    Article  CAS  PubMed  Google Scholar 

  23. Rheinwald J. G. and Green H. (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6(3), 331–343.

    Article  CAS  PubMed  Google Scholar 

  24. Lindberg, K. and Rheinwald, J. G. (1990) Three distinct keratinocyte subtypes identified in human oral epithelium by their patterns of keratin expression in culture and in xenografts. Differentiation 45, 230–241.

    Article  CAS  PubMed  Google Scholar 

  25. Rheinwald, J. G., Hahn, W. C., Ramsey, M. R., et al. (2002) A two-stage, p16(INK4A)-and p53-dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell Biol. 22, 5157–5172.

    Article  CAS  PubMed  Google Scholar 

  26. Andl, D., Mizushima, T., Nakagawa, H., et al. (2003) Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J. Biol. Chem. 278, 1824–1830.

    Article  CAS  PubMed  Google Scholar 

  27. Stampfer, M. R. (1985) Isolation and growth of human mammary epithelial cells. J. Tissue Culture Methods 9, 107–115.

    Article  Google Scholar 

  28. Foster, S. A. and Galloway, D. A. (1996) Human papillomavirus type 16 E7 alleviates a proliferation block in early passage human mammary epithelial cells. Oncogene 12(8), 1773–1779.

    CAS  PubMed  Google Scholar 

  29. Morgenstern, J. P. and Land, H. (1990) Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18, 3587–3596.

    Article  CAS  PubMed  Google Scholar 

  30. Hahn, W. C., Stewart, S. A., Brooks, M. W., et al. (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat. Med. 5, 1164–1170.

    Article  CAS  PubMed  Google Scholar 

  31. Mitra, J., Dai, C. Y., Somasundaram, K., et al. (1999) Induction of p21(WAF1/CIP1) and inhibition of Cdk2 mediated by the tumor suppressor Mol. Cell Biol. 19(5), 3916–3928.

    CAS  PubMed  Google Scholar 

  32. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector. J. Virol. 72, 8150–8157

    CAS  PubMed  Google Scholar 

  33. Kim, N. W. and Wu, F. (1997) Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595–2597.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Nakagawa, H., Opitz, O.G. (2007). Inducing Cellular Senescence Using Defined Genetic Elements. In: Tollefsbol, T.O. (eds) Biological Aging. Methods in Molecular Biology™, vol 371. Humana Press. https://doi.org/10.1007/978-1-59745-361-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-361-5_13

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-658-0

  • Online ISBN: 978-1-59745-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics