Skip to main content

Extension of Cell Life Span Using Exogenous Telomerase

  • Protocol
Biological Aging

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 371))

Abstract

Normal human somatic cells undergo limited cell division cycles and enter irreversible replication arrest called senescence. Cellular senescence of many human cell types is regulated by the length and status of telomeric sequences, which is shortened after each round of DNA replication. Telomeres can be rejuvenated by telomerase, an enzyme which carries out de novo synthesis of telomeric DNA. Telomerase is a ribonucleoprotein complex composed minimally of telomere reverse transcriptase gene (hTERT) and RNA template (hTR), and its enzyme activity in cells is primarily limited by the level of hTERT expression. Therefore, telomerase activity in cells can be reconstituted by overexpression of hTERT, frequently resulting in extension of replicative life span or immortalization. It is well established that the effect of telomerase reconstitution on cellular life span is clearly cell typedependent because telomere shortening is not the only limiting factor of cellular life span. However, telomerase activity appears to be a requirement for cellular immortalization, irrespective of the cell types. In this article, we discuss the detailed methods to extend the in vitro replicative life span of primary human cells by ectopic expression of hTERT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hayflick, L. (1965) The limited in vitro lifetime of human diploid cell strains. Exp. Cell Res. 37, 614–636.

    Article  CAS  PubMed  Google Scholar 

  2. Itahana, K., Campisi, J., and Dimri, G. P. (2004) Mechnisms of cellular senescence in human and mouse cells. Biogerontology 5, 1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522.

    Article  CAS  PubMed  Google Scholar 

  4. Karlseder, J., Smogorzewska, A., and de Lange, T. (2002) Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449.

    Article  CAS  PubMed  Google Scholar 

  5. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., and de Lange, T. (1999) p53-and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science 283, 1321–1325.

    Article  CAS  PubMed  Google Scholar 

  6. Harley, C. B., Futcher, B., Greider, C. W. (1990) Telomeres shorten during aging of human fibroblasts. Nature 345, 458–460.

    Article  CAS  PubMed  Google Scholar 

  7. Greider, C. W. and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–413.

    Article  CAS  PubMed  Google Scholar 

  8. Meyerson, M., Counter, C. M., Eaton, E. N., et al. (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90, 785–795.

    Article  CAS  PubMed  Google Scholar 

  9. Counter, C. M., Meyerson, M., Eaton, E. N., et al. (1998) Telomerase activity is restored in human cells by ectopic expression of hTERT (hEST2), the catalytic subunit of telomerase. Oncogene 16, 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  10. MacKenzie, K. L., Franco, S., May, C., Sadelain, M., and Moore, M. A. (2000) Mass cultured human fibroblasts overexpressing hTERT encounter a growth crisis following an extended period of proliferation. Exp. Cell Res. 259, 336–350.

    Article  CAS  PubMed  Google Scholar 

  11. Di Donna, S., Mamchaoui, K., Cooper, R. N., et al. (2003) Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization. Mol. Cancer Res. 1, 643–653.

    PubMed  Google Scholar 

  12. Darimont, C. and Mace, K. (2003) Immortalization of human preadipocytes. Biochimie 85, 1231–1233.

    Article  CAS  PubMed  Google Scholar 

  13. Migliaccio, M., Amacker, M., Just, T., et al. (2000) Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization. J. Immunol. 165, 4978–4984.

    CAS  PubMed  Google Scholar 

  14. Dickson, M. A., Hahn, W. C., Ino, Y., et al. (2000) Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Mol. Cell. Biol. 20, 1436–1447.

    Article  CAS  PubMed  Google Scholar 

  15. Kiyono, T., Foster, S. A., Koop, J. I., McDougall, J. K., Galloway, D. A., Klingelhutz, A. J. (1998) Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396, 84–88.

    Article  CAS  PubMed  Google Scholar 

  16. Noble, J. R., Zhong, Z. H., Neumann, A. A., Melki, J. R., Clark, S. J., and Reddel, R. R. (2004) Alterations in the p16(INK4a) and p53 tumor suppressor genes of hTERT-immortalized human fibroblasts. Oncogene 23, 3116–3121.

    Article  CAS  PubMed  Google Scholar 

  17. Milyavsky, M., Shats, I., Erez, N., et al. (2003) Prolonged culture of telomeraseimmortalized human fibroblasts leads to a premalignant phenotype. Cancer Res. 63, 7147–7157.

    CAS  PubMed  Google Scholar 

  18. Shin, K. H., Kang, M. K., Dicterow, E., Kameta, A., Baluda, M. A., and Park, N.-H. (2004) Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin. Cancer Res. 10, 2551–2560.

    Article  CAS  PubMed  Google Scholar 

  19. Kang, M. K., Bibb, C., Baluda, M. A., Rey, O., and Park, N.-H. (2000) In vitro replication and differentiation of normal human oral keratinocytes. Exp. Cell Res. 258, 288–297.

    Article  CAS  PubMed  Google Scholar 

  20. Kim, N. W., Piatyszek, M. A., Prowse, K. R., et al. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266, 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  21. Greider, C. W. and Blackburn, E. H. (1987) The telomere terminal transferase of Tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898.

    Article  CAS  PubMed  Google Scholar 

  22. Greider, C. W. and Blackburn, E. H. (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43(2 Pt 1), 405–413.

    Article  CAS  PubMed  Google Scholar 

  23. Sanders, D. A. (2002) No false start for novel pseudotyped vectors. Curr. Opin. Biotechnol. 13, 437–442.

    Article  CAS  PubMed  Google Scholar 

  24. Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., and Chen, I. S. (1996) High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J. Virol., 70, 2581–2585.

    CAS  PubMed  Google Scholar 

  25. Gulizia, J., Dempsey, M. P., Sharova, N., Bukrinsky, M. I., Spitz, L., Goldfarb, D., and Stevenson, M. (1994) Reduced nuclear import of human immunodeficiency virus type 1 preintegration complexes in the presence of a prototypic nuclear targeting signal. J. Virol. 68, 2021–2025.

    CAS  PubMed  Google Scholar 

  26. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., and Yee, J. K. (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc. Natl. Acad. Sci. USA 90, 8033–8037.

    Article  CAS  PubMed  Google Scholar 

  27. VandenDriessche, T., Collen, D., and Chuah, M. K. (2003) Biosafety of oncoretroviral vectors. Curr. Gene Ther. 3, 501–515.

    Article  CAS  PubMed  Google Scholar 

  28. Munger, K., Werness, B. A., Dyson, N., Phelps, W. C., Harlow, E., Howley, P. M. (1989) Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J. 8, 4099–4105.

    CAS  PubMed  Google Scholar 

  29. Rane, S. G., Cosenza, S. C., Mettus, R. V., Reddy, E. P. (2002) Germ line transmission of the Cdk4(R24C) mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 22, 644–656.

    Article  CAS  PubMed  Google Scholar 

  30. Kang, M. K., Swee, J., Kim, R. H., Baluda, M. A., and Park, N.-H. (2002) The telomeric length and heterogeneity decrease with age in normal human oral keratinocytes. Mech. Ageing Dev. 123, 585–592.

    Article  CAS  PubMed  Google Scholar 

  31. Kang, M. K., Kameta, A., Shin, K.-H, Baluda, M. A., and Park, N.-H. (2004) Replicative senescence of normal human oral keratinocytes is associated with loss of telomerase activity and hTERT expression followed by limited telomere shortening. J. Cell. Physiol. 199, 264–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Kang, M.K., Park, NH. (2007). Extension of Cell Life Span Using Exogenous Telomerase. In: Tollefsbol, T.O. (eds) Biological Aging. Methods in Molecular Biology™, vol 371. Humana Press. https://doi.org/10.1007/978-1-59745-361-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-361-5_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-658-0

  • Online ISBN: 978-1-59745-361-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics