Advertisement

Gene Profiling Uncovers Retinoid Target Genes

  • Yan Ma
  • Qing Feng
  • Ian Pitha-Rowe
  • Sutisak Kitareewan
  • Ethan Dmitrovsky
Part of the Methods in Molecularbiology™ book series (MIMB, volume 383)

Abstract

Decades of hypothesis-driven research have identified candidate targets for cancer therapy and chemoprevention. Recently, genomic, proteomic, and tissue-based microarray approaches have made possible another scientific approach. This is one that interrogates comprehensively the complex profile of mRNA or protein expression present in normal, preneoplastic, or malignant cells and tissues. This in turn can uncover critical targets for cancer pharmacology and also lead to a better understanding of the known or novel networks of gene expression that play a rate-limiting role in carcinogenesis. This chapter addresses the use of mRNA expression profiling to uncover candidate target genes active in cancer pharmacology by citing as an example how this has already proven useful to reveal that retinoids (natural and synthetic derivatives of vitamin A) signal through pathways, which promote tumor cell differentiation, induce growth suppression, trigger apoptosis or affect other growth regulatory pathways. Pathways involved in the regulation of protein stability will be highlighted as these play a critical role in mediating pharmacological effects of the retinoids in cancer therapy or chemoprevention.

Key Words

Cancer therapy cancer chemoprevention microarray gene profiling retinoid target genes retinoids 

References

  1. 1.
    Sporn, M. B., Dunlop, N. M., Newton, D. L., and Smith, J. M. (1976) Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35, 1332–1338.PubMedGoogle Scholar
  2. 2.
    Windmill, K. F., McKinnon, R. A., Zhu, X., Gaedigk, A., Grant, D. M., and McManus, M. E. (1997) The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mutat. Res. 376, 153–160.CrossRefPubMedGoogle Scholar
  3. 3.
    Talalay, P. (1989) Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Regul. 28, 237–250.CrossRefPubMedGoogle Scholar
  4. 4.
    Stoner, G. D., Morse, M. A., and Kelloff, G. J. (1997) Perspectives in cancer chemoprevention. Environ. Health Perspect. 105Suppl. 4, 945–954.CrossRefPubMedGoogle Scholar
  5. 5.
    Andela, V. B. (2004) Functional antagonism between NF-κB and nuclear receptors: implications in carcinogenesis and strategies for optimal cancer chemopreventive interventions. Curr. Cancer Drug Targets 4, 337–344.CrossRefPubMedGoogle Scholar
  6. 6.
    Sun, S. Y., Hail, N., Jr., and Lotan, R. (2004) Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 96, 662–672.CrossRefPubMedGoogle Scholar
  7. 7.
    Dragnev, K. H., Stover, D., and Dmitrovsky, E. (2003) Lung cancer prevention: the guidelines. Chest 123, 60S–71S.CrossRefPubMedGoogle Scholar
  8. 8.
    Dragnev, K. H., Rigas, J. R., and Dmitrovsky, E. (2000) The retinoids and cancer prevention mechanisms. Oncologist 5, 361–368.CrossRefPubMedGoogle Scholar
  9. 9.
    Moyers, S. B. and Kumar, N. B. (2004) Green tea polyphenols and cancer chemoprevention: multiple mechanisms and endpoints for phase II trials. Nutr. Rev. 62, 204–211.CrossRefPubMedGoogle Scholar
  10. 10.
    Conney, A. H. (2003) Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: the Seventh DeWitt S. Goodman Lecture. Cancer Res. 63, 7005–7031.PubMedGoogle Scholar
  11. 11.
    Jang, M., Cai, L., Udeani, G. O., et al. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220.CrossRefPubMedGoogle Scholar
  12. 12.
    Dong, Z. (2003) Molecular mechanism of the chemopreventive effect of resveratrol. Mutat. Res. 523-524, 145–150.CrossRefPubMedGoogle Scholar
  13. 13.
    Barnes, S. (2004) Soy isoflavones—phytoestrogens and what else? J. Nutr. 134, 1225S–1228S.PubMedGoogle Scholar
  14. 14.
    Birt, D. F., Hendrich, S., and Wang, W. (2001) Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol. Ther. 90, 157–177.CrossRefPubMedGoogle Scholar
  15. 15.
    Conaway, C. C., Yang, Y. M., and Chung, F. L. (2002) Isothiocyanates as cancer chemopreventive agents: their biological activities and metabolism in rodents and humans. Curr. Drug Metab. 3, 233–255.CrossRefPubMedGoogle Scholar
  16. 16.
    Murillo, G. and Mehta, R. G. (2001) Cruciferous vegetables and cancer prevention. Nutr. Cancer 41, 17–28.CrossRefPubMedGoogle Scholar
  17. 17.
    Rose, D. P. and Connolly, J. M. (1999) Omega-3 fatty acids as cancer chemopreventive agents. Pharmacol. Ther. 83, 217–244.CrossRefPubMedGoogle Scholar
  18. 18.
    Fisher, B., Costantino, J. P., Wickerham, D. L., et al. (1998) Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J. Natl. Cancer Inst. 90, 1371–1388.CrossRefPubMedGoogle Scholar
  19. 19.
    Rao, C. V. and Reddy, B. S. (2004) NSAIDs and chemoprevention. Curr. Cancer Drug Targets 4, 29–42.CrossRefPubMedGoogle Scholar
  20. 20.
    Freemantle, S. J., Spinella, M. J., and Dmitrovsky, E. (2003) Retinoids in cancer therapy and chemoprevention: promise meets resistance. Oncogene 22, 7305–7315.CrossRefPubMedGoogle Scholar
  21. 21.
    Wolbach, S. B. and Howe, P. R. (1925) Tissue changes following deprivation of fat-soluble A vitamin. J. Exp. Med. 42, 753–777.CrossRefPubMedGoogle Scholar
  22. 22.
    Dmitrovsky, E. (2004) Fenretinide activates a distinct apoptotic pathway. J. Natl. Cancer Inst. 96, 1264–1265.CrossRefPubMedGoogle Scholar
  23. 23.
    Lonardo, F., Dragnev, K. H., Freemantle, S. J., et al. (2002) Evidence for the epidermal growth factor receptor as a target for lung cancer prevention. Clin. Cancer Res. 8, 54–60.PubMedGoogle Scholar
  24. 24.
    Kerley, J. S., Olsen, S. L., Freemantle, S. J., and Spinella, M. J. (2001) Transcriptional activation of the nuclear receptor corepressor RIP140 by retinoic acid: a potential negative-feedback regulatory mechanism. Biochem. Biophys. Res. Commun. 285, 969–975.CrossRefPubMedGoogle Scholar
  25. 25.
    Freemantle, S. J., Kerley, J. S., Olsen, S. L., Gross, R. H., and Spinella, M. J. (2002) Developmentally-related candidate retinoic acid target genes regulated early during neuronal differentiation of human embryonal carcinoma. Oncogene 21, 2880–2889.CrossRefPubMedGoogle Scholar
  26. 26.
    Lee, C. H. and Wei, L. N. (1999) Characterization of receptor-interacting protein 140 in retinoid receptor activities. J. Biol. Chem. 274, 31,320–31,326.CrossRefPubMedGoogle Scholar
  27. 27.
    Treuter, E., Albrektsen, T., Johansson, L., Leers, J., and Gustafsson, J. A. (1998) A regulatory role for RIP140 in nuclear receptor activation. Mol. Endocrinol. 12, 864–881.CrossRefPubMedGoogle Scholar
  28. 28.
    Chuang, F. M., West, B. L., Baxter, J. D., and Schuafele, F. (1997) Activities in Pit-1 determine whether receptor interacting protein 140 activates or inhibits Pit-1/nuclear receptor transcriptional synergy. Mol. Endocrinol. 11, 1332–1341.CrossRefPubMedGoogle Scholar
  29. 29.
    Subramaniam, N., Treuter, E., and Okret, S. (1999) Receptor interacting protein RIP140 inhibits both positive and negative gene regulation by glucocorticoids. J. Biol. Chem. 274, 18,121–18,127.CrossRefPubMedGoogle Scholar
  30. 30.
    Miyata, K. S., McCaw, S. E., Meertens, L. M., Patel, H. V., Rachubinski, R. A., and Capone, J. P. (1998) Receptor-interacting protein 140 interacts with and inhibits transactivation by peroxisome proliferator-activated receptor alpha and liver-X-receptor alpha. Mol. Cell Endocrinol. 146, 69–76.CrossRefPubMedGoogle Scholar
  31. 31.
    Eng, F., Barsalou, A., Akutsu, N., et al. (1998) Different classes of coactivators recognize distinct but overlapping binding sites on the estrogen receptor ligand binding domain. J. Biol. Chem. 273, 28,371–28,377.CrossRefPubMedGoogle Scholar
  32. 32.
    White, K. A., Yore, M. M., Warburton, S. L., et al. (2003) Negative feedback at the level of nuclear receptor coregulation. Self-limitation of retinoid signaling by RIP140. J. Biol. Chem. 278, 43,889–43,892.CrossRefPubMedGoogle Scholar
  33. 33.
    Altucci, L., Rossin, A., Raffelsberger, W., Reitmair, A., Chomienne, C., and Gronemeyer, H. (2001) Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat. Med. 7, 680–686.CrossRefPubMedGoogle Scholar
  34. 34.
    Sun, S. Y., Yue, P., Hong, W. K., and Lotan, R. (2000) Augmentation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by the synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) through up-regulation of TRAIL receptors in human lung cancer cells. Cancer Res. 60, 7149–7155.PubMedGoogle Scholar
  35. 35.
    Clarke, N., Jimenez-Lara, A. M., Voltz, E., and Gronemeyer, H. (2004) Tumor suppressor IRF1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J. 23, 3051–3060.CrossRefPubMedGoogle Scholar
  36. 36.
    Ma, Y., Koza-Taylor, P. H., DiMattia, D. A., et al. (2003) Microarray analysis uncovers retinoid targets in human bronchial epithelial cells. Oncogene 22, 4924–4932.CrossRefPubMedGoogle Scholar
  37. 37.
    Tamayo, P., Slonim, D., Mesirov, J., et al. (1999) Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 96, 2907–2912.CrossRefPubMedGoogle Scholar
  38. 38.
    Almstrup, K., Hoei-Hansen, C. E., Wirkner, U., et al. (2004) Embryonic stem cell-like features of testicular carcinoma in situ revealed by genome-wide expression profiling. Cancer Res. 64, 4736–4743.CrossRefPubMedGoogle Scholar
  39. 39.
    McElwaine, S., Mulligan, C., Groet, J., et al. (2004) Microarray transcript profiling distinguishes the transient from the acute type of megakaryoblastic leukemia (M7) in Down’s syndrome, revealing PRAME as a specific discriminating marker. Br. J. Haematol. 125, 729–742.CrossRefPubMedGoogle Scholar
  40. 40.
    Oh, T. J., Kim, C. J., Woo, S. K., et al. (2004) Development and clinical evaluation of a highly sensitive DNA microarray for detection and genotyping of human papillomaviruses. J. Clin. Microbiol. 42, 3272–3280.CrossRefPubMedGoogle Scholar
  41. 41.
    Weisz, A., Basile, W., Scafoglio, C., et al. (2004) Molecular identification of ERalpha-positive breast cancer cells by the expression profile of an intrinsic set of estrogen regulated genes. J. Cell Physiol. 200, 440–450.CrossRefPubMedGoogle Scholar
  42. 42.
    Kitareewan, S., Pitha-Rowe, I., Sekula, D., et al. (2002) UBE1L is a retinoid target that triggers PML/RARα degradation and apoptosis in acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 3806–3811.CrossRefPubMedGoogle Scholar
  43. 43.
    Pitha-Rowe, I., Hassel, B. A., and Dmitrovsky, E. (2004) Involvement of UBE1L in ISG15 conjugation during retinoid-induced differentiation of acute promyelocytic leukemia. J. Biol. Chem. 279, 18,178–18,187.CrossRefPubMedGoogle Scholar
  44. 44.
    Zhu, J., Gianni, M., Kopf, E., et al. (1999) Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc. Natl. Acad. Sci. USA 96, 14,807–14,812.CrossRefPubMedGoogle Scholar
  45. 45.
    Langenfeld, J., Kiyokawa, H., Sekula, D., Boyle, J., and Dmitrovsky, E. (1997) Posttranslational regulation of cyclin D1 by retinoic acid: a chemoprevention mechanism. Proc. Natl. Acad. Sci. USA 94, 12,070–12,074.CrossRefPubMedGoogle Scholar
  46. 46.
    Spinella, M. J., Freemantle, S. J., Sekula, D., Chang, J. H., Christie, A. J., and Dmitrovsky, E. (1999) Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J. Biol. Chem. 274, 22,013–22,018.CrossRefPubMedGoogle Scholar
  47. 47.
    Kitareewan, S., Pitha-Rowe, I., Ma, Y., Freemantle, S. J., and Dmitrovsky, E. (2004) The retinoids and cancer prevention mechanisms, in Cancer Chemoprevention Volume 1: Promising Cancer Chemopreventive Agents, (Kelloff, G. J., Hawk, E. T., and Sigman, C. C., eds.), Humana Press, Totowa, NJ, pp. 277–288.Google Scholar
  48. 48.
    Langenfeld, J., Lonardo, F., Kiyokawa, H., et al. (1996) Inhibited transformation of immortalized human bronchial epithelial cells by retinoic acid is linked to cyclin E down-regulation. Oncogene 13, 1983–1990.PubMedGoogle Scholar
  49. 49.
    Pitha-Rowe, I., Petty, W. J., Feng, Q., et al. (2004) Microarray analyses uncover UBE1L as a candidate target gene for lung cancer chemoprevention. Cancer Res. 64, 8109–8115.CrossRefPubMedGoogle Scholar
  50. 50.
    Kok, K., Hofstra, R., Pilz, A., et al. (1993) A gene in the chromosomal region 3p21 with greatly reduced expression in lung cancer is similar to the gene for ubiquitin-activating enzyme. Proc. Natl. Acad. Sci. USA 90, 6071–6075.CrossRefPubMedGoogle Scholar
  51. 51.
    Carritt, B., Kok, K., van den Berg, A., et al. (1992) A gene from human chromosome region 3p21 with reduced expression in small cell lung cancer. Cancer Res. 52, 1536–1541.PubMedGoogle Scholar
  52. 52.
    Boyle, J. O., Langenfeld, J., Lonardo, F., et al. (1999) Cyclin D1 proteolysis: a retinoid chemoprevention signal in normal, immortalized, and transformed human bronchial epithelial cells. J. Natl. Cancer. Inst. 91, 373–379.CrossRefPubMedGoogle Scholar
  53. 53.
    Koziczak, M., Holbro, T., and Hynes, N. E. (2004) Blocking of FGFR signaling inhibits breast cancer cell proliferation through downregulating of D-type cyclins. Oncogene 23, 3501–3508.CrossRefPubMedGoogle Scholar
  54. 54.
    Chung, D. C. (2004) Cyclin D1 in human neuroendocrine: turmorigenesis. Ann. NY. Acad. Sci. 1014, 209–217.CrossRefPubMedGoogle Scholar
  55. 55.
    Barbieri, F., Lorenzi, P., Ragni, N., et al. (2004) Overexpression of cyclin D1 is associated with poor survival in epithelial ovarian cancer. Oncology 66, 310–315.CrossRefPubMedGoogle Scholar
  56. 56.
    Yuan, W. and Krug, R. M. (2001) Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371.CrossRefPubMedGoogle Scholar
  57. 57.
    Malakhov, M. P., Malakhova, O. A., Kim, K. I., Ritchie, K. J., and Zhang, D. E. (2002) UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277, 9976–9981.CrossRefPubMedGoogle Scholar
  58. 58.
    Malakhova, O. A., Yan, M., Malakhov, M. P., et al. (2003) Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17, 455–460.CrossRefPubMedGoogle Scholar
  59. 59.
    Pitha-Rowe, I., Petty, W. J., Kitareewan, S., and Dmitrovsky, E. (2003) Retinoid target genes in acute promyelocytic leukemia. Leukemia 17, 1723–1730.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Yan Ma
    • 1
    • 2
  • Qing Feng
    • 1
    • 2
  • Ian Pitha-Rowe
    • 1
    • 2
  • Sutisak Kitareewan
    • 1
    • 2
  • Ethan Dmitrovsky
    • 1
    • 2
    • 3
    • 4
  1. 1.Department of Pharmacology and ToxicologyDartmouth Medical SchoolHanover
  2. 2.Department of Pharmacology and ToxicologyDartmouth-Hitchcock Medical CenterLebanon
  3. 3.Department of Medicine, Norris Cotton Cancer CenterDartmouth Medical SchoolHanover
  4. 4.Department of Medicine, Norris Cotton Cancer CenterDartmouth-Hitchcock Medical CenterLebanon

Personalised recommendations