PKR in Innate Immunity, Cancer, and Viral Oncolysis

  • Siddharth Balachandran
  • Glen N. Barber
Part of the Methods in Molecularbiology™ book series (MIMB, volume 383)


The mammalian innate immune system provides a first line of defense against microbial pathogens and also serves to activate an antigen specific acquired immune program. Key components of innate immunity are the interferons (IFNs), a family of related cytokines with potent antimicrobial and immuno-modulatory activities. The IFNs exert their effects through the induction of numerous genes, one of which is the double-stranded RNA-dependent protein kinase (PKR), a pivotal antiviral protein found in most human cells. Following activation by double stranded (ds) RNAs produced during viral replication, PKR phosphorylates the α-subunit of eukaryotic translation initiation factor (eIF) 2, causing a severe inhibititon of cellular and viral protein synthesis. Phosphorylation of eIF2α and consequent inhibition of protein synthesis is a major cell growth checkpoint utilized by at least three other kinases, in addition to PKR, following exposure to such cellular stresses as amino acid deprivation and the presence of misfolded proteins in the endoplasmic reticulum. Indeed, it has been demonstrated that disruption of the eIF2α checkpoint can lead to the transformation of immortalized rodent and human cells, plausibly by increasing the protein synthesis rates of proto-oncogenes. Further, it has been shown that disregulation of the eIF2α checkpoint and consequent permissiveness to virus infection may be a common occurrence in tumorigenic mammalian cell lines. These findings have been exploited to develop potent oncolytic RNA viruses that can selectively replicate in and destroy a variety of neoplasias in vitro and in vivo. In this chapter, we describe some of the techniques commonly used in our laboratory to examine PKR activity and eIF2 regulation. Protocols for the generation and use of recombinant vesicular stomatitis virus variants are also described.

Key Words

eIF2α eIF2B oncolysis PKR translational control VSV 


  1. 1.
    Medzhitov, R. and Janeway, C. A., Jr. (1997) Innate immunity: the virtues of a monclonal system of recognition. Cell 91, 295–298.CrossRefPubMedGoogle Scholar
  2. 2.
    Medzhitov, R. and Janeway, C. A., Jr. (1998) Innate immune recognition and control of adaptive immune responses. Semin. Immunol. 10, 351–353.CrossRefPubMedGoogle Scholar
  3. 3.
    Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., and Schreiber, R. D. (1998) How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.CrossRefPubMedGoogle Scholar
  4. 4.
    Der, S. D., Zhou, A., Williams, B. R., and Silverman, R. H. (1998) Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 15,623–15,628.CrossRefPubMedGoogle Scholar
  5. 5.
    Meurs, E., Chong, K., Galabru, J., et al. (1990) Molecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell 62, 379–390.CrossRefPubMedGoogle Scholar
  6. 6.
    Barber, G. N., Edelhoff, S., Katze, M. G., and Disteche, C. M. (1993) Chromosomal assignment of the interferon-inducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21–p22 and mouse chromosome 17 E2. Genomics 16, 765–767.CrossRefPubMedGoogle Scholar
  7. 7.
    Barber, G. N., Jagus, R., Meurs, E. F., Hovanessian, A. G., and Katze, M. G. (1995) Molecular mechanisms responsible for malignant transformation by regulatory and catalytic domain variants of the interferon-induced enzyme RNA-dependent protein kinase. J. Biol. Chem. 270, 17,423–17,428.CrossRefPubMedGoogle Scholar
  8. 8.
    Clemens, M. J. and Elia, A. (1997) The double-stranded RNA-dependent protein kinase PKR: structure and function. J. Interferon Cytokine Res. 17, 503–524.CrossRefPubMedGoogle Scholar
  9. 9.
    Meurs, E. F., Galabru, J., Barber, G. N., Katze, M. G., and Hovanessian, A. G. (1993) Tumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc. Natl. Acad. Sci. USA 90, 232–236.CrossRefPubMedGoogle Scholar
  10. 10.
    Koromilas, A. E., Roy, S., Barber, G. N., Katze, M. G., and Sonenberg, N. (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257, 1685–1689.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu, S. and Kaufman, R. J. (1996) Double-stranded (ds) RNA binding and not dimerization correlates with the activation of the dsRNA-dependent protein kinase (PKR). J. Biol. Chem. 271, 1756–1763.CrossRefPubMedGoogle Scholar
  12. 12.
    Webb, B. L. and Proud, C. G. (1997) Eukaryotic initiation factor 2B (eIF2B). Intl. J. Biochem. Cell Biol. 29, 1127–1131.CrossRefGoogle Scholar
  13. 13.
    Thomis, D. C. and Samuel, C. E. (1993) Mechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J. Virol. 67, 7695–7700.PubMedGoogle Scholar
  14. 14.
    McMillan, N. A., Carpick, B. W., Hollis, B., Toone, W. M., Zamanian-Daryoush, M., and Williams, B. R. (1995) Mutational analysis of the double-stranded RNA (dsRNA) binding domain of the dsRNA-activated protein kinase, PKR. J. Biol. Chem. 270, 2601–2606.CrossRefPubMedGoogle Scholar
  15. 15.
    Jagus, R., Joshi, B., and Barber, G. N. (1999) PKR, apoptosis and cancer. Int. J. Biochem. Cell Biol. 31, 123–138.CrossRefPubMedGoogle Scholar
  16. 16.
    Williams, B. R., (1999) PKR; a sentinel kinase for cellular stress. Oncogene 18, 6112–6120.CrossRefPubMedGoogle Scholar
  17. 17.
    Panniers, R. and Henshaw, E. C. (1984) Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur. J. Biochem. 140, 209–214.CrossRefPubMedGoogle Scholar
  18. 18.
    Cuddihy, A. R., Wong, A. H., Tam, N. W., Li, S., and Koromilas, A. E. (1999) The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18, 2690–2702.CrossRefPubMedGoogle Scholar
  19. 19.
    Ito, T., Jagus, R., and May, W. S. (1994) Interleukin 3 stimulates protein synthesis by regulating double-stranded RNA-dependent protein kinase. Proc. Natl. Acad. Sci. USA 91, 7455–7459.CrossRefPubMedGoogle Scholar
  20. 20.
    Mundschau, L. J. and Faller, D. V. (1995) Platelet-derived growth factor signal transduction through the interferon-inducible kinase PKR. Immediate early gene induction. J. Biol. Chem. 270, 3100–3106.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang, Y. L., Reis, L. F., Pavlovic, J., et al. (1995) Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14, 6095–6106.PubMedGoogle Scholar
  22. 22.
    Kumar, A., Yang, Y. L., Flati, V., et al. (1997) Deficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion in the PKR gene: role of IRF-1 and NF-kappaB. EMBO J. 16, 406–416.CrossRefPubMedGoogle Scholar
  23. 23.
    Wong, A. H., Tam, N. W., Yang, Y. L., et al. (1997) Physical association between STAT1 and the interferon-inducible protein kinase PKR and implications for interferon and double-stranded RNA signaling pathways. EMBO J. 16, 1291–1304.CrossRefPubMedGoogle Scholar
  24. 24.
    Goh, K. C., deVeer, M. J., and Williams, B. R. (2000) The protein kinase PKR is required for p38 MAPK activation and the innate immune response to bacterial endotoxin. EMBO J. 19, 4292–4297.CrossRefPubMedGoogle Scholar
  25. 25.
    Barber, G. N., Thompson, S., Lee, T. G., et al. (1994) The 58-kilodalton inhibitor of the interferon-induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties. Proc. Natl. Acad. Sci. USA 91, 4278–4282.CrossRefPubMedGoogle Scholar
  26. 26.
    Saunders, L. R., Perkins, D. J., Balachandran, S., et al. (2001) Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and-2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J. Biol. Chem. 276, 32,300–32,312.CrossRefPubMedGoogle Scholar
  27. 27.
    Patel, R. C. and Sen, G. C. (1998) PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J. 17, 4379–4390.CrossRefPubMedGoogle Scholar
  28. 28.
    Pataer, A., Vorburger, S. A., Barber, G. N., et al. (2002) Adenoviral transfer of the melanoma differentiation-associated gene 7 (mda7) induces apoptosis of lung cancer cells via up-regulation of the double-stranded RNA-dependent protein kinase (PKR). Cancer Res. 62, 2239–2243.PubMedGoogle Scholar
  29. 29.
    Jagus, R. and Gray, M. M. (1994) Proteins that interact with PKR. Biochimie 76, 779–791.CrossRefPubMedGoogle Scholar
  30. 30.
    Williams, B. R. (2001) Signal integration via PKR. Sci STKE 2001 89, RE2.Google Scholar
  31. 31.
    Fisher, P. B. (2005) Is mda-7/IL-24 a magic bullet for cancer? Cancer Res. 65, 10,128–10,138.CrossRefPubMedGoogle Scholar
  32. 32.
    Katze, M. G. (1995) Regulation of the interferon-induced PKR: can viruses cope? Trends Microbiol. 3, 75–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Katze, M. G., He, Y., and Gale, M. Jr. (2002) Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2(9), 675–687.CrossRefPubMedGoogle Scholar
  34. 34.
    Durbin, R. K., Mertz, S. E., Koromilas, A. E., and Durbin, J. E. (2002) PKR protection against intranasal vesicular stomatitis virus infection is mouse strain dependent. Viral Immunol. 15, 41–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Balachandran, S., Roberts, P. C., Brown, L. E., et al. (2000) Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13, 129–141.CrossRefPubMedGoogle Scholar
  36. 36.
    Stojdl, D. F., Abraham, N., Knowles, S., et al. (2000) The murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J. Virol. 74, 9580–9585.CrossRefPubMedGoogle Scholar
  37. 37.
    Barber, G. N., Wambach, M., Thompson, S., Jagus, R., and Katze, M. G. (1995) Mutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol. Cell Biol. 15, 3138–3146.PubMedGoogle Scholar
  38. 38.
    Barber, G. N., Tomita, J., Garfinkel, M. S., Meurs, E., Hovanessian, A., and Katze, M. G. (1992) Detection of protein kinase homologues and viral RNA-binding domains utilizing polyclonal antiserum prepared against a baculovirus-expressed ds RNA-activated 68,000-Da protein kinase. Virology 191, 670–679.CrossRefPubMedGoogle Scholar
  39. 39.
    Dever, T. E., Sripriya, R., McLachlin, J. R., et al. (1998) Disruption of cellular translational control by a viral truncated eukaryotic translation initiation factor-2α kinase homolog. Proc. Natl. Acad. Sci. USA 95, 4164–4169.CrossRefPubMedGoogle Scholar
  40. 40.
    Chong, K. L., Feng, L., Schappert, K., et al. (1992) Human p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 11, 1553–1562.PubMedGoogle Scholar
  41. 41.
    Balachandran, S., Kim, C. N., Yeh, W. C., Mak, T. W., Bhalla, K., and Barber, G. N. (1998) Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 17, 6888–6902.CrossRefPubMedGoogle Scholar
  42. 42.
    Donze, O., Dostie, J., and Sonenberg, N. (1999) Regulatable expression of the interferon-induced double-stranded RNA dependent protein kinase PKR induces apoptosis and fas receptor expression. Virology 256, 322–329.CrossRefPubMedGoogle Scholar
  43. 43.
    Lee, S. B. and Esteban, M. (1994) The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology 199, 491–496.CrossRefPubMedGoogle Scholar
  44. 44.
    Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): mechanism of action. Apoptosis 5, 107–114.CrossRefPubMedGoogle Scholar
  45. 45.
    Donze, O., Deng, J., Curran, J., Sladek, R., Picard, D., and Sonenberg, N. (2004) The protein kinase PKR: a molecular clock that sequentially activates survival and death programs. EMBO J. 23, 564–571.CrossRefPubMedGoogle Scholar
  46. 46.
    Gil, J., Rullas, J., Garcia, M. A., Alcami, J., and Esteban, M. (2001) The catalytic activity of dsRNA-dependent protein kinase, PKR, is required for NF-κB activation. Oncogene 20, 385–394.CrossRefPubMedGoogle Scholar
  47. 47.
    Gil, J., Garcia, M. A., Gomez-Puertas, P., et al. (2004) TRAF family proteins link PKR with NF-kappa B activation. Mol. Cell Biol. 24, 4502–4512.CrossRefPubMedGoogle Scholar
  48. 48.
    Perkins, D. J. and Barber, G. N. (2004) Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol. Cell Biol. 24, 2025–2040.CrossRefPubMedGoogle Scholar
  49. 49.
    Hinnebusch, A. G. (1994) The eIF-2α kinases: regulators of protein synthesis in starvation and stress. Semin. Cell Biol. 5, 417–426.CrossRefPubMedGoogle Scholar
  50. 50.
    Han, A. P., Yu, C., Lu, L., et al. (2001) Heme-regulated eIF2α kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J. 20, 6909–6918.CrossRefPubMedGoogle Scholar
  51. 51.
    Dever, T. E., Feng, L., Wek, R. C., Cigan, A. M., Donahue, T. F., and Hinnebusch, A. G. (1992) Phosphorylation of initiation factor-2α by protein kinase GCN2 mediates gene-specific translational control of GCN4 in yeast. Cell 68, 585–596.CrossRefPubMedGoogle Scholar
  52. 52.
    Harding, H. P., Zhang, Y., Zeng, H., et al. (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol. Cell. 11, 619–633.CrossRefPubMedGoogle Scholar
  53. 53.
    Harding, H. P., Zhang, Y., Bertolotti, A., Zeng, H., and Ron, D. (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5, 897–904.CrossRefPubMedGoogle Scholar
  54. 54.
    Harding, H. P., Zhang, Y., and Ron, D. (1999) Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase (see comments). Nature 397, 271–274 [erratum appears in Nature 1999;398:90].CrossRefPubMedGoogle Scholar
  55. 55.
    Scheuner, D., Song, B., McEwen, E., et al. (2001) Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell 7, 1165–1176.CrossRefPubMedGoogle Scholar
  56. 56.
    Harding, H. P. and Ron, D. (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51, S455–S461.CrossRefPubMedGoogle Scholar
  57. 57.
    Donze, O., Jagus, R., Koromilas, A. E., Hershey, J. W., and Sonenberg, N. (1995) Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 14, 3828–3834.PubMedGoogle Scholar
  58. 58.
    Balachandran, S. and Barber, G. N. (2004) Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5, 51–65.CrossRefPubMedGoogle Scholar
  59. 59.
    Wagner, R. R. and Rose, J. K. (1996) Rhabdoviridae: the Viruses and Their Replication, in Fields Virology, (Fields, B. N., Howley, P. M. et al., ed.), Lipincott-Raven Publishers: Philadelphia, PA, pp. 1121–1135.Google Scholar
  60. 60.
    Balachandran, S. and Barber, G. N. (2000) Vesicular stomatitis virus therapy of tumors. IUBMB Life 50, 135–138.PubMedGoogle Scholar
  61. 61.
    Balachandran, S., Porosnicu, M., and Barber, G. N. (2001) Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or Myc function and involves induction of apoptosis. J. Virol. 75, 3474–3479.CrossRefPubMedGoogle Scholar
  62. 62.
    Fernandez, M., Porosnicu, M., Markovic, D., and Barber, G. N. (2002) Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J. Virol. 76, 895–904.CrossRefPubMedGoogle Scholar
  63. 63.
    Obuchi, M., Fernandez, M., and Barber, G. N. (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J. Virol. 77, 8843–8856.CrossRefPubMedGoogle Scholar
  64. 64.
    Stojdl, D. F., Lichty, B., Knowles, S., et al. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat. Med. 6, 821–825.CrossRefPubMedGoogle Scholar
  65. 65.
    Stojdl, D. F., Lichty, B. D., tenOever, B. R., et al. (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275.CrossRefPubMedGoogle Scholar
  66. 66.
    Wagner, R. R. (1987) Rhabdovirus biology and infection, an overview, in The Rhabdoviruses, (Wagner, R. R., ed.), Plenum, New York, pp. 9–74.Google Scholar
  67. 67.
    Rose, R. R. and Joklik, W. (1996) Rhabdoviridae: the viruses and their replication, in Fields Virology, (D.M.K. B.N. Fields, P.M. Howley, eds.), Lippincott-Raven, Philadelphia, PA, pp. 1121–1136.Google Scholar
  68. 68.
    Porosnicu, M., Mian, A., and Barber, G. N. (2003) The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res. 63, 8366–8376.PubMedGoogle Scholar
  69. 69.
    Dever, T. E., Chen, J. J., Barber, G. N., et al. (1993) Mammalian eukaryotic initiation factor 2 α-kinases functionally substitute for GCN2 protein kinase in the GCN4 translational control mechanism of yeast. Proc. Natl. Acad. Sci. USA 90, 4616–4620.CrossRefPubMedGoogle Scholar
  70. 70.
    Laurent, A. G., Krust, B., Galabru, J., Svab, J., and Hovanessian, A. G. (1985) Monoclonal antibodies to an interferon-induced Mr 68,000 protein and their use for the detection of double-stranded RNA-dependent protein kinase in human cells. Proc. Natl. Acad. Sci. USA 82, 4341–4345.CrossRefPubMedGoogle Scholar
  71. 71.
    Konieczny, A. and Safer, B. (1983) Purification of the eukaryotic initiation factor 2-eukaryotic initiation factor 2B complex and characterization of its guanine nucleotide exchange activity during protein synthesis initiation. J. Biol. Chem. 258, 3402–3408.PubMedGoogle Scholar
  72. 72.
    Savinova, O. and Jagus, R. (1997) Use of vertical slab isoelectric focusing and immunoblotting to evaluate steady-state phosphorylation of eIF2 alpha in cultured cells. Methods 11, 419–425.CrossRefPubMedGoogle Scholar
  73. 73.
    DeGracia, D. J., Sullivan, J. M., Neumar, R. W., et al. (1997) Effect of brain ischemia and reperfusion on the localization of phosphorylated eukaryotic initiation factor 2 alpha. J. Cerebral Blood Flow Metab. 17, 1291–1302.CrossRefGoogle Scholar
  74. 74.
    Lawson, N. D., Stillman, E. A., Whitt, M. A., and Rose, J. K. (1995) Recombinant vesicular stomatitis viruses from DNA [published erratum appears in Proc Natl Acad Sci USA 1995 Sep 12;92(19):9009]. Proc. Natl. Acad. Sci. USA 92, 4477–4481.CrossRefPubMedGoogle Scholar
  75. 75.
    Schnell, M. J., Buonocore, L., Kretzschmar, E., Johnson, E., and Rose, J. K. (1996) Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc. Natl. Acad. Sci. USA 93, 11,359–11,365.CrossRefPubMedGoogle Scholar
  76. 76.
    Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13, 1211–1233.CrossRefPubMedGoogle Scholar
  77. 77.
    Mori, K. (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101, 451–454.CrossRefPubMedGoogle Scholar
  78. 78.
    Patil, C. and Walker, P. (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr. Opin. Cell Biol. 13, 349–355.CrossRefPubMedGoogle Scholar
  79. 79.
    Harding, H. P., Calfon, M., Urano, F., Novoa, I., and Ron, D. (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Ann. Rev. Cell Dev. Biol. 18, 575–599.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Siddharth Balachandran
    • 1
  • Glen N. Barber
    • 1
  1. 1.Department of Microbiology and Immunology, Sylvester Comprehensive Cancer CenterUniversity of Miami School of MedicineMiami

Personalised recommendations