Reciprocal Subtraction Differential RNA Display (RSDD)

An Efficient Technology for Cloning Differentially Expressed Genes
  • Devanand Sarkar
  • Dong-chul Kang
  • Paul B. Fisher
Part of the Methods in Molecularbiology™ book series (MIMB, volume 383)


Identification of differentially expressed genes is an essential step in comprehending the molecular basis of complex physiological and pathological processes. Subtraction hybridization and differential RNA display (DDRT-PCR) are two methods that are widely and successfully employed to clone differentially expressed genes. Unfortunately, both methods have inherent problems and limitations requiring improvements in the technique. A combination of these two methods termed reciprocal subtraction differential RNA display is described here that considerably reduces the complexity of DDRT-PCR and facilitates the rapid and efficient identification and cloning of both abundant and rare differentially expressed genes.

Key Words

Cloning differential RNA display reciprocal subtraction differential RNA display RSDD subtraction hybridization tumor progression gene expression 


  1. 1.
    Sarkar, D., Kang, D. C., Goldstein, N. I., and Fisher, P. B. (2004) Approaches for gene discovery and defining novel protein interactions and networks. Curr. Genomics 5, 231–244.CrossRefGoogle Scholar
  2. 2.
    Liang, P. and Pardee, A. B. (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257, 967–971.CrossRefPubMedGoogle Scholar
  3. 3.
    Liang, P., Zhu, W., Zhang, X., et al. (1994) Differential display using one-base anchored oligo-dT primers. Nucleic Acids Res. 22, 5763–5764.CrossRefPubMedGoogle Scholar
  4. 4.
    Liang, P., Bauer, D., Averboukh, L., et al. (1995) Analysis of altered gene expression by differential display. Methods Enzymol. 254, 304–321.CrossRefPubMedGoogle Scholar
  5. 5.
    Liang, P. and Pardee, A. B. (1995) Recent advances in differential display. Curr. Opin. Immunol. 7, 274–280.CrossRefPubMedGoogle Scholar
  6. 6.
    Liang, P. and Pardee, A. B. (1997) Differential display. A general protocol. Methods Mol. Biol. 85, 3–11.PubMedGoogle Scholar
  7. 7.
    Debouck, C. (1995) Differential display or differential dismay? Curr. Opin. Biotechnol. 6, 597–599.CrossRefGoogle Scholar
  8. 8.
    Sompayrac, L., Jane, S., Burn, T. C., Tenen, D. G., and Danna, K. J. (1995) Overcoming limitations of the mRNA differential display technique. Nucleic Acids Res. 23, 4738–4739.CrossRefPubMedGoogle Scholar
  9. 9.
    Sagerstrom, C. G., Sun, B. I., and Sive, H. L. (1997) Subtractive cloning: past, present, and future. Ann. Rev. Biochem. 66, 751–783.CrossRefPubMedGoogle Scholar
  10. 10.
    Rangnekar, V. V., Waheed, S., and Rangnekar, V. M. (1992) Interleukin-1-inducible tumor growth arrest is characterized by activation of cell type-specific “early” gene expression programs. J. Biol. Chem. 267, 6240–6248.PubMedGoogle Scholar
  11. 11.
    Wong, B., Park, C. G., and Choi, Y. (1997) Identifying the molecular control of T-cell death; on the hunt for killer genes. Semin. Immunol. 9, 7–16.CrossRefPubMedGoogle Scholar
  12. 12.
    Maser, R. L. and Calvet, J. P. (1995) Analysis of differential gene expression in the kidney by differential cDNA screening, subtractive cloning, and mRNA differential display. Semin. Nephrol. 15, 29–42.PubMedGoogle Scholar
  13. 13.
    Wan, J. S., Sharp, S. J., Poirier, G. M., et al. (1996) Cloning differentially expressed mRNAs. Nat. Biotechnol. 14, 1685–1691.CrossRefPubMedGoogle Scholar
  14. 14.
    Kang, D. C., LaFrance, R., Su, Z. Z., and Fisher, P. B. (1998) Reciprocal subtraction differential RNA display: an efficient and rapid procedure for isolating differentially expressed gene sequences. Proc. Natl. Acad. Sci. USA 95, 13,788–13,793.CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang, H. and Fisher, P. B. (1993) Use of a sensitive and efficient subtraction hybridization protocol for the identification of genes differentially regulated during the induction of differentiation in human melanoma cells. Mol. Cell Differ. 1, 285–299.Google Scholar
  16. 16.
    Gubler, U. and Hoffman, B. J. (1983) A simple and very efficient method for generating cDNA libraries. Gene 25, 263–269.CrossRefPubMedGoogle Scholar
  17. 17.
    Short, J. M., Fernandez, J. M., Sorge, J. A., and Huse, W. D. (1988) Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 16, 7583–7600.CrossRefPubMedGoogle Scholar
  18. 18.
    Short, J. M. and Sorge, J. A. (1992) In vivo excision properties of bacteriophage lambda ZAP expression vectors. Methods Enzymol. 216, 495–508.CrossRefPubMedGoogle Scholar
  19. 19.
    Hay, B. and Short, J. M. (1992) ExAssist™ helper phage and SOLR™ for lambda ZAP II excisions. Strategies 5, 16–18.Google Scholar
  20. 20.
    Sambrook, J. and Russell, D. W. (ed.) (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor, NY.Google Scholar
  21. 21.
    Sive, H. L. and St. John, T. (1988) A simple subtractive hybridization technique employing photoactivatable biotin and phenol extraction. Nucleic Acids Res. 16, 10,937.CrossRefPubMedGoogle Scholar
  22. 22.
    Herfort, M. R. and Garber, A. T. (1991) Simple and efficient subtractive hybridization screening. Biotechniques 11, 598–604.PubMedGoogle Scholar
  23. 23.
    Babiss, L. E., Zimmer, S. G., and Fisher, P. B. (1985) Reversibility of progression of the transformed phenotype in Ad5-transformed rat embryo cells. Science 228, 1099–1101.CrossRefPubMedGoogle Scholar
  24. 24.
    Su, Z. Z., Shi, Y., and Fisher, P. B. (1997) Subtraction hybridization identifies a transformation progression-associated gene PEG-3 with sequence homology to a growth arrest and DNA damage-inducible gene. Proc. Natl. Acad. Sci. USA 94, 9125–9130.CrossRefPubMedGoogle Scholar
  25. 25.
    Hakvoort, T. B., Leegwater, A. C., Michiels, F. A., Chamuleau, R. A., and Lamers, W. H. (1994) Identification of enriched sequences from a cDNA subtraction-hybridization procedure. Nucleic Acids Res. 22, 878–879.CrossRefPubMedGoogle Scholar
  26. 26.
    Mathieu-Daude, F., Cheng, R., Welsh, J., and McClelland, M. (1996) Screening of differentially amplified cDNA products from RNA arbitrarily primed PCR fingerprints using single strand conformation polymorphism (SSCP) gels. Nucleic Acids Res. 24, 1504–1507.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang, H., Zhang, R., and Liang, P. (1996) Differential screening of gene expression difference enriched by differential display. Nucleic Acids Res. 24, 2454–2455.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc., Totowa, NJ 2007

Authors and Affiliations

  • Devanand Sarkar
    • 1
  • Dong-chul Kang
    • 2
  • Paul B. Fisher
    • 1
    • 3
    • 4
    • 5
  1. 1.Department of UrologyColumbia University Medical Center, College of Physicians and SurgeonsNew York
  2. 2.Ilsong Institute of Life ScienceHallym UniversityAnyang, Kyeonggi-doRepublic of Korea
  3. 3.Herbert Irving Comprehensive Cancer CenterCollege of Physicians and Surgeons, Columbia University Medical CenterNew York
  4. 4.Department of PathologyCollege of Physicians and Surgeons, Columbia University Medical CenterNew York
  5. 5.Department of NeurosurgeryCollege of Physicians and Surgeons, Columbia University Medical CenterNew York

Personalised recommendations