Skip to main content

The Applications of Systematic In-Frame, Single-Gene Knockout Mutant Collection of Escherichia coli K-12

  • Protocol
Microbial Gene Essentiality: Protocols and Bioinformatics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 416))

Abstract

The increasing genome sequence data of microorganisms has provided the basis for comprehensive understanding of organisms at the molecular level. Besides sequence data, a large number of experimental and computational resources are required for genome-scale analyses. Escherichia coli K-12 has been one of the best characterized organisms in molecular biology. Recently, the whole-genome sequences of two closely related E. coli K-12 strains, MG1655 (1) and W3110 (2), were compared and confirmed by resequencing selected regions from both strains (2). The availability of highly accurate E. coli K-12 genomes provided an impetus for the cooperative reannotation of both MG1655 and W3110 (3). A set of precisely defined, single-gene knockout mutants of all nonessential genes in E. coli K-12 was constructed based on the recent accurate genome sequence data ([4] and Chapter 11). These mutants were designed to create in-frame (nonpolar) deletions upon elimination of the resistance cassette. These mutants have provided new key information on E. coli biology. First, the vast majority of the 3985 genes that were independently disrupted at least twice are probably nonessential, at least under the conditions of selection. Second, the 303 genes that we repeatedly failed to disrupt are candidates for E. coli essential genes. Lastly, phenotypic effects of all these mutations in the uniform genetic background of E. coli BW25113 were assessed by profiling mutants’ growth yields on rich and minimal media (4). These mutants should provide not only a basic resource for systematic functional genomics but also an experimental data source for systems biology applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blattner, F. R., Plunkett, G. 3rd, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1474.

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi, K., Morooka, N., Yamamoto, Y., Fujita, K., Isono, K., Choi, S., et al. (2006) Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol. Syst. Biol.

    Google Scholar 

  3. Riley, M., Abe, T., Arnaud, M. B., Berlyn, M. K., Blattner, F. R., Chaudhuri, R. et al. (2006) Escherichia coli K-12: a cooperatively developed annotation snapshot-2005. Nucleic Acids Res. 34, 1–9.

    Article  CAS  PubMed  Google Scholar 

  4. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., et al. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knock-out mutants-the Keio collection. Mol. Syst. Biol.

    Google Scholar 

  5. Gerdes, S. Y., Scholle, M. D., Campbell, J. W., Balazsi, G., Ravasz, E., Daugherty, M. D., et al. (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J. Bacteriol. 185, 5673–5684.

    Article  CAS  PubMed  Google Scholar 

  6. Hashimoto, M., Ichimura, T., Mizoguchi, H., Tanaka, K., Fujimitsu, K., Keyamura, K., et al. (2005) Cell size and nucleoid organization of engineered Escherichia coli cells with a reduced genome. Mol. Microbiol. 55, 137–149.

    Article  CAS  PubMed  Google Scholar 

  7. Kang, Y., Durfee, T., Glasner, J. D., Qiu, Y., Frisch, D., Winterberg, K. M. and Blattner, F. R. (2004) Systematic mutagenesis of the Escherichia coli genome. J. Bacteriol. 186, 4921–4930.

    Article  CAS  PubMed  Google Scholar 

  8. Tatusov, R. L., Koonin, E. V., and Lipman, D. J. (1997) A genomic perspective on protein families. Science 278, 631–637.

    Article  CAS  PubMed  Google Scholar 

  9. Uchiyama, I. (2003) MBGD: microbial genome database for comparative analysis. Nucleic Acids Res. 31, 58–62.

    Article  CAS  PubMed  Google Scholar 

  10. Arakawa, K., Mori, K., Ikeda, K., Matsuzaki, T., Kobayashi, Y., and Tomita, M. (2003) G-language Genome Analysis Environment: a workbench for nucleotide sequence data mining. Bioinformatics 19, 305–306.

    Article  CAS  PubMed  Google Scholar 

  11. Tatusov, R. L., Natale, D. A., Garkavtsev, I. V., Tatusova, T. A., Shankavaram, U. T., Rao, B. S., et al. (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 29, 22–28.

    Article  CAS  PubMed  Google Scholar 

  12. Hiratsu, K., Amemura, M., Nashimoto, H., Shinagawa, H., and Makino, K. (1995) The rpoE gene of Escherichia coli, which encodes sigma E, is essential for bacterial growth at high temperature. J. Bacteriol. 177, 2918–2922.

    CAS  PubMed  Google Scholar 

  13. Zhou, Y. N., Kusukawa, N., Erickson, J. W., Gross, C. A., and Yura, T. (1988) Isolation and characterization of Escherichia coli mutants that lack the heat shock sigma factor sigma 32. J. Bacteriol. 170, 3640–3649.

    CAS  PubMed  Google Scholar 

  14. Dabbs, E. R. (1991) Mutants lacking individual ribosomal proteins as a tool to investigate ribosomal properties. Biochimie 73, 639–645.

    Article  CAS  PubMed  Google Scholar 

  15. Tong, X., Campbell, J. W., Balazsi, G., Kay, K. A., Wanner, B. L., Gerdes, S. Y., and Oltvai, Z. N. (2004) Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. Biochem. Biophys. Res. Commun. 322, 347–354.

    Article  CAS  PubMed  Google Scholar 

  16. Kobayashi, K., Ehrlich, S. D., Albertini, A., Amati, G., Andersen, K. K., Arnaud, M., et al. (2003) Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. U.S.A. 100, 4678–4683.

    Article  CAS  PubMed  Google Scholar 

  17. Neidhardt, F. C., Bloch, P. L. and Smith, D. F. (1974) Culture medium for enterobacteria. J. Bacteriol., 119, 736–747.

    CAS  PubMed  Google Scholar 

  18. Yook, S. H., Oltvai, Z. N., and Barabasi, A. L. (2004) Functional and topological characterization of protein interaction networks. Proteomics 4, 928–942.

    Article  CAS  PubMed  Google Scholar 

  19. Barabasi, A. L., and Oltvai, Z. N. (2004) Network biology: understanding the cell’s functional organization. Nat. Rev. Genet. 5, 101–113.

    Article  CAS  PubMed  Google Scholar 

  20. Jeong, H., Mason, S. P., Barabasi, A. L., and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature 411, 41–42.

    Article  CAS  PubMed  Google Scholar 

  21. Yu, H., Greenbaum, D., Xin Lu, H., Zhu, X., and Gerstein, M. (2004) Genomic analysis of essentiality within protein networks. Trends Genet. 20, 227–231.

    Article  CAS  PubMed  Google Scholar 

  22. Arifuzzaman, M., Maeda, M., Itoh, A., Nishikata, K., Takita, C., Saito, R., et al. (2006) Large-scale identification of protein-protein interaction of Escherichia coli K-12. Genome Res. 16, 686–691.

    Article  CAS  PubMed  Google Scholar 

  23. Melnick, J., Lis, E., Park, J. H., Kinsland, C., Mori, H., Baba, T., et al. (2004) Identification of the two missing bacterial genes involved in thiamine salvage: thiamine pyrophosphokinase and thiamine kinase. J. Bacteriol. 186, 3660–3662.

    Article  CAS  PubMed  Google Scholar 

  24. Yang, C., Hua, Q., Baba, T., Mori, H., and Shimizu, K. (2003) Analysis of Escherichia coli anaplerotic metabolism and its regulation mechanisms from the metabolic responses to altered dilution rates and phosphoenolpyruvate carboxykinase knockout. Biotechnol. Bioeng. 84, 129–144.

    Article  PubMed  Google Scholar 

  25. Hua, Q., Yang, C., Baba, T., Mori, H., and Shimizu, K. (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J. Bacteriol. 185, 7053–7067.

    Article  CAS  PubMed  Google Scholar 

  26. Hua, Q., Yang, C., Oshima, T., Mori, H., and Shimizu, K. (2004) Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures. Appl. Environ. Microbiol. 70, 2354–2366.

    Article  CAS  PubMed  Google Scholar 

  27. Jiao, Z., Baba, T., Mori, H., and Shimizu, K. (2003) Analysis of metabolic and physiological responses to gnd knockout in Escherichia coli by using C-13 tracer experiment and enzyme activity measurement. FEMS Microbiol. Lett. 220, 295–301.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, J., Baba, T., Mori, H., and Shimizu, K. (2004) Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6, 164–174.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, J., Baba, T., Mori, H., and Shimizu, K. (2004) Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities. Appl. Microbiol. Biotechnol. 64, 91–98.

    Article  CAS  PubMed  Google Scholar 

  30. Perrenoud, A., and Sauer, U. (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J. Bacteriol. 187, 3171–3179.

    Article  CAS  PubMed  Google Scholar 

  31. Tenorio, E., Saeki, T., Fujita, K., Kitakawa, M., Baba, T., Mori, H., and Isono, K. (2003) Systematic characterization of Escherichia coli genes/ORFs affecting biofilm formation. FEMS Microbiol. Lett. 225, 107–114.

    Article  CAS  PubMed  Google Scholar 

  32. Itoh, A., Ohashi, Y., Soga, T., Mori, H., Nishioka, T., and Tomita, M. (2004) Application of capillary electrophoresis-mass spectrometry to synthetic in vitro glycolysis studies. Electrophoresis 25, 1996–2002.

    Article  CAS  PubMed  Google Scholar 

  33. Nakatogawa, H., Murakami, A., Mori, H., and Ito, K. (2005) SecM facilitates translocase function of SecA by localizing its biosynthesis. Genes Dev. 19, 436–444.

    Article  CAS  PubMed  Google Scholar 

  34. Murakami, A., Nakatogawa, H., and Ito, K. (2004) Translation arrest of SecM is essential for the basal and regulated expression of SecA. Proc. Natl. Acad. Sci. U.S.A. 101, 12330–12335.

    Article  CAS  PubMed  Google Scholar 

  35. Kruse, T., Moller-Jensen, J., Lobner-Olesen, A., and Gerdes, K. (2003) Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 22, 5283–5292.

    Article  CAS  PubMed  Google Scholar 

  36. Kruse, T., Bork-Jensen, J., and Gerdes, K. (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol. Microbiol. 55, 78–89.

    Article  CAS  PubMed  Google Scholar 

  37. Anderson, R. P., and Roth, J. R. (1978) Tandem genetic duplications in Salmonella typhimurium: amplification of the histidine operon. J. Mol. Biol. 126, 53–71.

    Article  CAS  PubMed  Google Scholar 

  38. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press Inc., a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Baba, T., Huan, HC., Datsenko, K., Wanner, B.L., Mori, H. (2008). The Applications of Systematic In-Frame, Single-Gene Knockout Mutant Collection of Escherichia coli K-12. In: Osterman, A.L., Gerdes, S.Y. (eds) Microbial Gene Essentiality: Protocols and Bioinformatics. Methods in Molecular Biology™, vol 416. Humana Press. https://doi.org/10.1007/978-1-59745-321-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-321-9_12

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-378-7

  • Online ISBN: 978-1-59745-321-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics