Skip to main content

Tumor-Stroma Interactions of Metastatic Prostate Cancer Cell Lines

Analyses Using Microarrays

  • Protocol
Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 382))

Abstract

Tumor-stroma interactions are of great importance not only for the development and progression of primary prostate carcinoma but probably also for the establishment of metastasis. Fibroblasts are an important stromal cell type encountered by metastatic tumor cells at different sites. In previous investigations, we had found that media conditioned by three metastatic prostate cancer cell lines (LNCaP, PC-3, and DU-145) induced cultured nonprostatic fibroblasts to proliferate or to express matrix-metalloproteinase-1 considered important for tumor invasion. Fibroblast-conditioned media in turn stimulate proliferation of DU-145 cells and migration of PC-3 cells. Both tumor cells and fibroblasts secrete VEGF suggesting that not only metastatic but also stromal cells at metastatic sites contribute to the vascularization of metastasis necessary for continuous growth.

In order to better understand the reciprocal tumor-stroma cross-talk in molecular terms we used the mRNA extracted from stimulated and unstimulated neoplastic and fibroblastic stromal cells for cDNA array hybridization using Affymetrix® chips. The three prostate cell lines influenced the fibroblasts nearly in the same manner. In particular proteins involved in cell adhesion, cell-cell contact, and cell cycle regulation were downregulated in stimulated fibroblasts. In contrast, fibroblasts affected every prostate cancer cell line in different ways, which may be because of the different origin of the metastatic prostate cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denmeade, S. R. and Isaacs, J. T. (2002) A history of prostate cancer treatment. Nat. Rev. Cancer 2, 389–396.

    Article  CAS  Google Scholar 

  2. Isaacs, W., De Marzo, A., and Nelson, W. G. (2002) Focus on prostate cancer. Cancer Cell 2, 113–116.

    Article  CAS  Google Scholar 

  3. Jarrard, D. F., Kinoshita, H., Shi, Y., et al. (1998) Methylation of the androgen receptor promoter CpG island is associated with loss of androgen receptor expression in prostate cancer cells. Cancer Res. 58, 5310–5314.

    CAS  Google Scholar 

  4. Culig, Z., Hobisch, A., Cronauer, M. V., et al. (1994) Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res. 54, 5474–5478.

    CAS  Google Scholar 

  5. Hobisch, A., Eder, I. E., Putz, T., et al. (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58, 4640–4645.

    CAS  Google Scholar 

  6. Veldscholte, J., Ris-Stalpers, C., Kuiper, G. G., et al. (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem. Biophys. Res. Commun. 173, 534–540.

    Article  CAS  Google Scholar 

  7. Visakorpi, T., Kallioniemi, A. H., Syvanen, A. C., et al. (1995) Genetic changes in primary and recurrent prostate cancer by comparative genomic hybridization. Cancer Res. 55, 342–347.

    CAS  Google Scholar 

  8. Yeh, S. and Chang, C. (1996) Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc. Natl. Acad. Sci. USA 93, 5517–5521.

    Article  CAS  Google Scholar 

  9. Muller, J. M., Isele, U., Metzger, E., et al. (2000) FHL2, a novel tissue-specific coactivator of the androgen receptor. Embo J. 19, 359–369.

    Article  CAS  Google Scholar 

  10. Gregory, C. W., He, B., Johnson, R. T., et al. (2001) A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res. 61, 4315–4319.

    CAS  Google Scholar 

  11. McKenna, N. J. and O’Malley, B. W. (2001) Nuclear receptor coactivators—an update. Endocrinology 143, 2461–2465.

    Article  Google Scholar 

  12. Giovannucci, E. (1999) Nutritional factors in human cancers. Adv. Exp. Med. Biol. 472, 29–42.

    CAS  Google Scholar 

  13. Schmitz-Drager, B. J., Eichholzer, M., Beiche, B., and Ebert, T. (2001) Nutrition and prostate cancer. Urol. Int. 67, 1–11.

    Article  CAS  Google Scholar 

  14. Jankevicius, F., Miller, S. M., and Ackermann, R. (2002) Nutrition and risk of prostate cancer. Urol. Int. 68, 69–80.

    Article  CAS  Google Scholar 

  15. Bratt, O. (2002) Hereditary prostate cancer: clinical aspects. J. Urol. 168, 906–913.

    Article  Google Scholar 

  16. Nwosu, V., Carpten, J., Trent, J. M., and Sheridan, R. (2001) Heterogeneity of genetic alterations in prostate cancer: evidence of the complex nature of the disease. Hum. Mol. Genet. 10, 2313–2318.

    Article  CAS  Google Scholar 

  17. Simard, J., Dumont, M., Soucy, P., and Labrie, F. (2002) Perspective: prostate cancer susceptibility genes. Endocrinology 143, 2029–2040.

    Article  CAS  Google Scholar 

  18. Slager, S. L., Schaid, D. J., Cunningham, J. M., et al. (2003) Confirmation of linkage of prostate cancer aggressiveness with chromosome 19q. Am. J. Hum. Genet. 72, 759–762.

    Article  CAS  Google Scholar 

  19. Paiss, T., Worner, S., Kurtz, F., et al. (2003) Linkage of aggressive prostate cancer to chromosome 7q31–33 in German prostate cancer families. Eur. J. Hum. Genet. 11, 17–22.

    Article  CAS  Google Scholar 

  20. Simard, J., Dumont, M., Soucy, P., and Labrie, F. (2002) Prostate cancer susceptibility genes. Endocrinology 143, 2029–2040.

    Article  CAS  Google Scholar 

  21. Ingles, S. A., Ross, R. K., Yu, M. C., et al. (1997) Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor. J. Natl. Cancer Inst. 89, 166–170.

    Article  CAS  Google Scholar 

  22. Correa-Cerro, L., Berthon, P., Haussler, J., et al. (1999) Vitamin D receptor polymorphisms as markers in prostate cancer. Hum. Genet. 105, 281–287.

    Article  CAS  Google Scholar 

  23. Makridakis, N. M., Ross, R. K., Pike, M. C., et al. (1999) Association of missense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet 354, 975–978.

    Article  CAS  Google Scholar 

  24. Steinhoff, C., Franke, K. H., Golka, K., et al. (2000) Glutathione transferase isozyme genotypes in patients with prostate and bladder carcinoma. Arch. Toxicol. 74, 521–526.

    Article  CAS  Google Scholar 

  25. Jenkins, R. B., Qian, J., Lieber, M. M., and Bostwick, D. G. (1997) Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 57, 524–531.

    CAS  Google Scholar 

  26. Devi, G. R., Oldenkamp, J. R., London, C. A., and Iversen, P. L. (2002) Inhibition of human chorionic gonadotropin β-subunit modulates the mitogenic effect of c-myc in human prostate cancer cells. Prostate 53, 200–210.

    Article  CAS  Google Scholar 

  27. Saramaki, O., Willi, N., Bratt, O., et al. (2001) Amplification of EIF3S3 gene is associated with advanced stage in prostate cancer. Am. J. Pathol. 159, 2089–2094.

    Article  CAS  Google Scholar 

  28. McDonnell, T. J., Troncoso, P., Brisbay, S. M., et al. (1992) Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgenindependent prostate cancer. Cancer Res. 52, 6940–6944.

    CAS  Google Scholar 

  29. Djakiew, D. (2000) Dysregulated expression of growth factors and their receptors in the development of prostate cancer. Prostate 42, 150–160.

    Article  CAS  Google Scholar 

  30. Navone, N. M., Troncoso, P., Pisters, L. L., et al. (1993) p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J. Natl. Cancer Inst. 85, 1657–1669.

    Article  CAS  Google Scholar 

  31. Li, J., Yen, C., Liaw, D., et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947.

    Article  CAS  Google Scholar 

  32. Hügel, A. and Wernert, N. (1999) Loss of heterozygosity, malignancy grade and clonality in microdissected prostate cancer. Br. J. Cancer 79, 551–557.

    Article  Google Scholar 

  33. Lijovic, M. and Frauman, A. G. (2003) Toward an understanding of the molecular genetics of prostate cancer progression. J. Environ Pathol. Toxicol. Oncol. 22, 1–15.

    Article  CAS  Google Scholar 

  34. Elo, J. P. and Visakorpi, T. (2001) Molecular genetics of prostate cancer. Ann. Med. 33, 130–141.

    Article  CAS  Google Scholar 

  35. Srivastava, M., Bubendorf, L., Srikantan, V., et al. (2001) ANX7, a candidate tumor suppressor gene for prostate cancer. Proc. Natl. Acad. Sci. USA 98, 4575–4580.

    Article  CAS  Google Scholar 

  36. Banham, A. H., Beasley, N., Campo, E., et al. (2001) The FOXP1 winged helix transcription factor is a novel candidate tumor suppressor gene on chromosome 3p. Cancer Res. 61, 8820–8829.

    CAS  Google Scholar 

  37. Kuzmin, I., Gillespie, J. W., Protopopov, A., et al. (2002) The RASSF1A tumor suppressor gene is inactivated in prostate tumors and suppresses growth of prostate carcinoma cells. Cancer Res. 62, 3498–3502.

    CAS  Google Scholar 

  38. Abate-Shen, C. and Shen, M. M. (2000) Molecular genetics of prostate cancer. Genes Dev. 14, 2410–2434.

    Article  CAS  Google Scholar 

  39. Dong, J. T. (2001) Chromosomal deletions and tumor suppressor genes in prostate cancer. Cancer Metastasis Rev. 20, 173–193.

    Article  CAS  Google Scholar 

  40. Maier, S., Reich, E., Martin, R., et al. (2000) Tributyrin induces differentiation, growth arrest and apoptosis in androgen-sensitive and androgen-resistant human prostate cancer cell lines. Int. J. Cancer 88, 245–251.

    Article  CAS  Google Scholar 

  41. Adorjan, P., Distler, J., Lipscher, E., et al. (2002) Tumor class prediction and discovery by microarray-based DNA methylation analysis. Nucl. Acids Res. 30, e21.

    Article  Google Scholar 

  42. Maruyama, R., Toyooka, S., Toyooka, K. O., et al. (2002) Aberrant promoter methylation profile of prostate cancers and its relationship to clinicopathological features. Clin. Cancer Res. 8, 514–519.

    CAS  Google Scholar 

  43. Schulz, W. A., Elo, J. P., Florl, A. R., et al. (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35, 58–65.

    Article  CAS  Google Scholar 

  44. Gerstein, A. V., Almeida, T. A., Zhao, G., et al. (2002) APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34, 9–16.

    Article  CAS  Google Scholar 

  45. Ko, Y., Hahn, T., Lu, H., et al. (2005) A novel component of the ubiquitin pathway, ubiquitin carboxyl extension protein 1 is overexpressed in prostate cancer. Int. J. Mol. Med. 15, 183–196.

    CAS  Google Scholar 

  46. Cunha, G. R., Hayward, S. W., and Wang, Y. Z. (2002) Role of stroma in carcinogenesis of the prostate. Differentiation 70, 473–485.

    Article  Google Scholar 

  47. Sung, S. Y. and Chung, L. W. (2002) Prostate tumor-stroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation 70, 506–521.

    Article  CAS  Google Scholar 

  48. Wernert, N. (1997) The multiple roles of tumor stroma. Virch. Arch. A 430, 433–443.

    Article  CAS  Google Scholar 

  49. Wernert, N., Locherbach, C., Wellmann, A., Behrens, P., and Hugel, A. (2001) Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Res. 21, 2259–2264.

    CAS  Google Scholar 

  50. Park, C. C., Bissell, M. J., and Barcellos-Hoff, M. H. (2000) The influence of the microenvironment on the malignant phenotype. Mol. Med. Today 6, 324–329.

    Article  CAS  Google Scholar 

  51. Liotta, L. A. and Kohn, E. C. (2001) The microenvironment of the tumor-host interface. Nature 411, 375–379.

    Article  CAS  Google Scholar 

  52. McCawley, L. J. and Matrisian, L. M. (2001) Tumor progression: defining the soil round the tumor seed. Curr. Biol. 11, R25–R27.

    Article  CAS  Google Scholar 

  53. Chrenek, M. A., Wong, P., and Weaver, V. M. (2001) Tumor-stromal interactions. Integrins and cell adhesions as modulators of mammary cell survival and transformation. Breast Cancer Res. 3, 224–229.

    Article  CAS  Google Scholar 

  54. Bissell, M. J. and Radisky, D. (2001) Putting tumors in context. Nat. Rev. Cancer 1, 46–54.

    Article  CAS  Google Scholar 

  55. Cunha, G. R. (1994) Role of mesenchymal-epithelial interactions in normal and abnormal development of the mammary gland and prostate. Cancer 74, 1030–1044.

    Article  CAS  Google Scholar 

  56. Cunha, G. R. (1996) Growth factors as mediators of androgen action during male urogenital development. Prostate Suppl. 6, 22–25.

    Article  CAS  Google Scholar 

  57. Cunha, G. R., Hayward, S. W., Dahiya, R., and Foster, B. A. (1996) Smooth muscle-epithelial interactions in normal and neoplastic prostatic development. Acta Anat. (Basel) 155, 63–72.

    Article  CAS  Google Scholar 

  58. Cunha, G. R., Foster, B., Thomson, A., et al. (1995) Growth factors as mediators of androgen action during the development of the male urogenital tract. World J. Urol. 13, 264–276.

    Article  CAS  Google Scholar 

  59. Sugimura, Y., Foster, B. A., Hom, Y. K., et al. (1996) Keratinocyte growth factor (KGF) can replace testosterone in the ductal branching morphogenesis of the rat ventral prostate. Int. J. Dev. Biol. 40, 941–951.

    CAS  Google Scholar 

  60. Thomson, A. A., Foster, B. A., and Cunha, G. R. (1997) Analysis of growth factor and receptor mRNA levels during development of the rat seminal vesicle and prostate. Development 124, 2431–2439.

    CAS  Google Scholar 

  61. Foster, B. A. and Cunha, G. R. (1999) Efficacy of various natural and synthetic androgens to induce ductal branching morphogenesis in the developing anterior rat prostate. Endocinology 140, 318–328.

    Article  CAS  Google Scholar 

  62. Hayward, S. W., Haughney, P. C., Rosen, M. A., et al. (1998) Interactions between adult human prostatic epithelium and rat urogenital sinus mesenchyme in a tissue recombination model. Differentiation 63, 131–140.

    Article  CAS  Google Scholar 

  63. Hayward, S. W., Rosen, M. A., and Cunha, G. R. (1997) Stromal-epithelial interactions in the normal and neoplastic prostate. Br. J. Urol. 79, 18–26.

    Google Scholar 

  64. Chung, L. W. and Davies, R. (1996) Prostate epithelial differentiation is dictated by its surrounding stroma. Mol. Biol. Rep. 23, 13–19.

    Article  CAS  Google Scholar 

  65. Condon, M. S. and Bosland, M. C. (1999) The role of stromal cells in prostate cancer development and progression. In Vivo 13, 61–65.

    CAS  Google Scholar 

  66. Kooistra, A., Romijn, J. C., and Schroder, F. H. (1997) Stromal inhibition of epithelial cell growth in the prostate, overview of an experimental study. Urol. Res. 25, S97–S105.

    Article  CAS  Google Scholar 

  67. Gleave, M. E., Hsieh, J. T., von Eschenbach, A. C., and Chung, L. W. K. (1992) Prostate and bone fibroblasts induce human prostate cancer growth in vivo: implications for bidirectional tumor-stromal cell interactions in prostate carcinoma growth and metastasis. J. Urol. 147, 1151–1159.

    CAS  Google Scholar 

  68. Olumi, A. F., Dazin, P., and Tlsty, T. D. (1998) A novel coculture technique demonstrates that normal human prostatic fibroblasts contribute to tumor formation of LNCaP cells by retarding cell death. Cancer Res. 58, 4525–4530.

    CAS  Google Scholar 

  69. Camps, J. L., Chang, S. M., Hsu, T. C., et al. (1990) Fibroblast mediated acceleration of human epithelial tumor growth in vivo. Proc. Natl. Acad. Sci. USA 87, 75–79.

    Article  CAS  Google Scholar 

  70. Kooistra, A., Van den Eijnden-van Raaij, A. J., Klaij, I. A., Romijn, J. C., and Schroder, F. H. (1995) Stromal inhibiton of prostatic epithelial cell proliferation not mediated by transforming growth factor beta. Br. J. Cancer 72, 427–434.

    Article  CAS  Google Scholar 

  71. Wellmann, A., Wollscheid, V., Lu, H., et al. (2002) Analysis of microdissected prostate tissue with ProteinChip arrays—a way to new insights into carcinogenesis and to diagnostic tools. Int. J. Mol. Med. 9, 341–347.

    CAS  Google Scholar 

  72. Straub, B., Muller, M., Krause, H., Schrader, M., and Miller, K. (2003) Quantitative real-time RT-PCR for detection of circulating prostate-specific antigen mRNA using sequence-specific oligonucleotide hybridization probes in prostate cancer patients. Oncology 65, 12–17.

    Article  CAS  Google Scholar 

  73. Schmidt, U., Bilkenroth, U., Linne, C., et al. (2004) Quantification of disseminated tumor cells in the bloodstream of patients with hormone-refractory prostate carcinoma undergoing cytotoxic chemotherapy. Int. J. Oncol. 24, 1393–1399.

    Google Scholar 

  74. Bubendorf, L., Schopfer, A., Wagner, U., et al. (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583.

    Article  CAS  Google Scholar 

  75. Rubin, M. A., Putzi, M., Mucci, N., et al. (2000) Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin. Cancer Res. 6, 1038–1045.

    CAS  Google Scholar 

  76. Cooper, C. R., McLean, L., Walsh, M., et al. (2000) Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin. Cancer Res. 6, 4839–4847.

    CAS  Google Scholar 

  77. Lehr, J. E. and Pienta, K. J. (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J. Natl. Cancer Inst. 90, 118–123.

    Article  CAS  Google Scholar 

  78. Cooper, C. R., Chay, C. H., Gendernalik, J. D., et al. (2003) Stromal factors involved in prostate carcinoma metastasis to bone. Cancer 97, 739–747.

    Article  Google Scholar 

  79. Chay, C. H., Cooper, C. R., Gendernalik, J. D., et al. (2002) A functional thrombin receptor (PAR1) is expressed on bone-derived prostate cancer cell lines. Urology 60, 760–765.

    Article  Google Scholar 

  80. Kaighn, M. E., Narayan, K. S., Ohnuki, Y., Lechner, J. F., and Jones, L. W. (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest. Urol. 17, 16–23.

    CAS  Google Scholar 

  81. Stone, K. R., Mickey, D. D., Wunderli, H., Mickey, G. H., and Paulson, D. F. (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int. J. Cancer 21, 274–281.

    Article  CAS  Google Scholar 

  82. Horoszewicz, J. S., Leong, S. S., Chu, T. M., et al. (1980) The LNCaP cell line—a new model for studies on human prostatic carcinoma. Prog. Clin. Biol. Res. 37, 115–132.

    CAS  Google Scholar 

  83. Wernert, N., Gilles, F., Fafeur, V., et al. (1994) Stromal expression of c-ets 1 transcription factor correlates with tumor invasion. Cancer Res. 54, 5683–5688.

    CAS  Google Scholar 

  84. Bourdeau, I. (2004) Clinical and molecular genetic studies of bilateral adrenal hyperplasias. Endocr. Res. 30, 575–583.

    Article  CAS  Google Scholar 

  85. Galvin, J. E. and Ginsberg, S. D. (2004) Expression profiling and pharmacotherapeutic development in the central nervous system. Alzheimer Dis. Assoc. Disord. 18, 264–269.

    Google Scholar 

  86. Kawakami, Y., Fujita, T., Matsuzaki, Y., et al. (2004) Identification of human tumor antigens and its implications for diagnosis and treatment of cancer. Cancer Sci. 95, 784–791.

    Article  CAS  Google Scholar 

  87. Haraguchi, N., Inoue, H., Mimori, K., et al. (2004) Analysis of gastric cancer with cDNA microarray. Cancer Chemother. Pharmacol. 54, S21–S24.

    CAS  Google Scholar 

  88. Sipos, F., Galamb, O., Molnar, B., and Tulassay, Z. (2004) Use of DNA-chips technology in colorectal cancer. Orv. Hetil. 145, 993–999.

    Google Scholar 

  89. Mycko, M. P., Papoian, R., Boschert, U., Raine, C. S., and Selmaj, K. W. (2004) Microarray gene expression profiling of chronic active and inactive lesions in multiple sclerosis. Clin. Neurol. Neurosurg. 106, 223–229.

    Article  Google Scholar 

  90. Aigner, T., Finger, F., Zien, A., and Bartnik, E. (2004) cDNA-microarrays in cartilage research—functional genomics of osteoarthritis. Z. Orthop. 142, 241–247.

    Article  CAS  Google Scholar 

  91. Lapillonne, A., Clarke, S. D., and Heird, W. C. (2004) Polyunsaturated fatty acids and gene expression. Curr. Opin. Clin. Nutr. Metab. Care 7, 151–156.

    Article  CAS  Google Scholar 

  92. Kiefer, J., Alexander, A., and Farach-Carson, M. C. (2004) Type I collagen-mediated changes in gene expression and function of prostate cancer cells. Cancer Treat. Res. 118, 101–124.

    CAS  Google Scholar 

  93. Goldsmith, Z. G. and Dhanasekaran, N. (2004) The microrevolution: applications and impacts of microarray technology on molecular biology and medicine (review). Int. J. Mol. Med. 13, 483–495.

    CAS  Google Scholar 

  94. Fargiano, A. A., Desai, K. V., and Green, J. E. (2003) Interrogating mouse mammary cancer models: insights from gene expression profiling. J. Mammary Gland Biol. Neoplasia 8, 321–334.

    Article  Google Scholar 

  95. Schwaenen, C., Wessendorf, S., Kestler, H. A., Dohner, H., Lichter, P., and Bentz, M. (2003) DNA microarray analysis in malignant lymphomas. Ann. Hematol. 82, 323–332.

    Article  CAS  Google Scholar 

  96. Giard, D. J. (1987) Routine heat inactivation of serum reduces its capacity to promote cell attachment. In Vitro Cell Dev. Biol. 23, 691–697.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Wernert, N., Kaminski, A., Haddouti, EM., Hahne, J.C. (2007). Tumor-Stroma Interactions of Metastatic Prostate Cancer Cell Lines. In: Rampal, J.B. (eds) Microarrays. Methods in Molecular Biology, vol 382. Humana Press. https://doi.org/10.1007/978-1-59745-304-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-304-2_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-944-4

  • Online ISBN: 978-1-59745-304-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics