Skip to main content

The Use of Microarray Technology in Nonmammalian Vertebrate Systems

  • Protocol
Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 382))

Abstract

Among vertebrates, the mammalian systems that are frequently used to investigate questions related to human health have gained the most benefit from microarray technology to date. However, it is clear that biological investigations and the generalized conclusions drawn from them, can only be enhanced by including organisms in which specific processes can be readily studied because of their genetic, physiological, or developmental disposition. As a result, the field of functional genomics has recently begun to embrace a number of other vertebrate species. This review summarizes the current state of microarray technology in a subset of these vertebrate organisms, including Xenopus, Rana, zebrafish, killifish (Fundulus sp.), medaka (Oryzias latipes), Atlantic salmon, and rainbow trout. A summary of various applications of microarray technology and a brief introduction to the steps involved in carrying out a microarray experiment are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oleksiak, M. F., Kolell, K. J., and Crawford, D. L. (2001) Utility of natural populations for microarray analyses: isolation of genes necessary for functional genomic studies. Mar. Biotechnol. (NY) 3, S203–S211.

    Article  CAS  Google Scholar 

  2. Renn, S. C., Aubin-Horth, N., and Hofmann, H. A. (2004) Biologically meaningful expression profiling across species using heterologous hybridization to a cDNA microarray. BMC Genomics 5, 42.

    Article  Google Scholar 

  3. Levine, M. and Davidson, E. H. (2005) Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936–4942.

    Article  CAS  Google Scholar 

  4. Pollet, N., Muncke, N., Verbeek, B., et al. (2005) An atlas of differential gene expression during early Xenopus embryogenesis. Mech. Dev. 122, 365–439.

    Article  CAS  Google Scholar 

  5. Kudoh, T., Tsang, M., Hukriede, N. A., et al. (2001) A gene expression screen in zebrafish embryogenesis. Genome Res. 11, 1979–1987.

    Article  CAS  Google Scholar 

  6. Quiring, R., Wittbrodt, B., Henrich, T., et al. (2004) Large-scale expression screening by automated whole-mount in situ hybridization. Mech. Dev. 121, 971–976.

    Article  CAS  Google Scholar 

  7. Baldessari, D., Shin, Y., Krebs, O., et al. (2005) Global gene expression profiling and cluster analysis in Xenopus laevis. Mech. Dev. 122, 441–475.

    Article  CAS  Google Scholar 

  8. Ton, C., Stamatiou, D., Dzau, V. J., and Liew, C. C. (2002) Construction of a zebrafish cDNA microarray: gene expression profiling of the zebrafish during development. Biochem. Biophys. Res. Commun. 296, 1134–1142.

    Article  CAS  Google Scholar 

  9. Lo, J., Lee, S., Xu, M., et al. (2003) 15000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome Res. 13, 455–466.

    Article  Google Scholar 

  10. Linney, E., Dobbs-McAuliffe, B., Sajadi, H., and Malek, R. L. (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 351–362.

    Article  Google Scholar 

  11. Kimura, T., Jindo, T., Narita, T., et al. (2004) Large-scale isolation of ESTs from medaka embryos and its application to medaka developmental genetics. Mech. Dev. 121, 915–932.

    Article  Google Scholar 

  12. von Schalburg, K. R., Rise, M. L., Brown, G. D., Davidson, W. S., and Koop, B. F. (2005) A comprehensive survey of the genes involved in maturation and development of the rainbow trout ovary. Biol. Reprod. 72, 687–699.

    Article  Google Scholar 

  13. Altmann, C. R., Bell, E., Sczyrba, A., et al. (2001) Microarray-based analysis of early development in Xenopus laevis. Dev. Biol. 236, 64–75.

    Article  CAS  Google Scholar 

  14. Vallee, M., Gravel, C., Palin, M. F., et al. (2005) Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biol. Reprod. 73, 63–71.

    Article  CAS  Google Scholar 

  15. Chung, H. A., Hyodo-Miura, J., Kitayama, A., Terasaka, C., Nagamune, T., and Ueno, N. (2004) Screening of FGF target genes in Xenopus by microarray: temporal dissection of the signalling pathway using a chemical inhibitor. Genes Cells 9, 749–761.

    Article  CAS  Google Scholar 

  16. Arima, K., Shiotsugu, J., Niu, R., et al. (2005) Global analysis of RARresponsive genes in the Xenopus neurula using cDNA microarrays. Dev. Dyn. 232, 414–431.

    Article  CAS  Google Scholar 

  17. Peiffer, D. A., Von Bubnoff, A., Shin, Y., et al. (2005) A Xenopus DNA microarray approach to identify novel direct BMP target genes involved in early embryonic development. Dev. Dyn. 232, 445–456.

    Article  CAS  Google Scholar 

  18. Shin, Y., Kitayama, A., Koide, T., et al. (2005) Identification of neural genes using Xenopus DNA microarrays. Dev. Dyn. 233, 248.

    Article  CAS  Google Scholar 

  19. Taverner, N. V., Kofron, M., Shin, Y., et al. (2005) Microarray-based identification of VegT targets in Xenopus. Mech. Dev. 122, 333–354.

    Article  CAS  Google Scholar 

  20. Munoz-Sanjuan, I., Bell, E., Altmann, C. R., Vonica, A., and Brivanlou, A. H. (2002) Gene profiling during neural induction in Xenopus laevis: regulation of BMP signaling by post-transcriptional mechanisms and TAB3, a novel TAK1-binding protein. Development 129, 5529–5540.

    Article  CAS  Google Scholar 

  21. Leung, A. Y., Mendenhall, E. M., Kwan, T. T., et al. (2005) Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. Dev. Biol. 277, 235–254.

    Article  CAS  Google Scholar 

  22. Katogi, R., Nakatani, Y., Shin-i, T., Kohara, Y., Inohaya, K., and Kudo, A. (2004) Large-scale analysis of the genes involved in fin regeneration and blastema formation in the medaka, Oryzias latipes. Mech. Dev. 121, 861–872.

    Article  CAS  Google Scholar 

  23. Rise, M. L., Jones, S. R., Brown, G. D., von Schalburg, K. R., Davidson, W. S., and Koop, B. F. (2004) Microarray analyses identify molecular biomarkers of Atlantic salmon macrophage and hematopoietic kidney response to Piscirickettsia salmonis infection. Physiol. Genomics 20, 21–35.

    Article  CAS  Google Scholar 

  24. Tsoi, S. C., Cale, J. M., Bird, I. M., Ewart, V., Brown, L. L., and Douglas, S. (2003) Use of human cDNA microarrays for identification of differentially expressed genes in Atlantic salmon liver during Aeromonas salmonicida infection. Mar. Biotechnol. (NY) 5, 545–554.

    Article  CAS  Google Scholar 

  25. Ewart, K. V., Belanger, J. C., Williams, J., et al. (2005) Identification of genes differentially expressed in Atlantic salmon (Salmo salar) in response to infection by Aeromonas salmonicida using cDNA microarray technology. Dev. Comp. Immunol. 29, 333–347.

    Article  CAS  Google Scholar 

  26. Rawls, J. F., Samuel, B. S., and Gordon, J. I. (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101, 4596–4601.

    Article  CAS  Google Scholar 

  27. Podrabsky, J. E. and Somero, G. N. (2004) Changes in gene expression associated with acclimation to constant temperatures and fluctuating daily temperatures in an annual killifish Austrofundulus limnaeus. J. Exp. Biol. 207, 2237–2254.

    Article  CAS  Google Scholar 

  28. Malek, R. L., Sajadi, H., Abraham, J., Grundy, M. A., and Gerhard, G. S. (2004) The effects of temperature reduction on gene expression and oxidative stress in skeletal muscle from adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138, 363–373.

    Article  Google Scholar 

  29. Ton, C., Stamatiou, D., and Liew, C. C. (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol. Genomics 13, 97–106.

    CAS  Google Scholar 

  30. Krasnov, A., Koskinen, H., Pehkonen, P., Rexroad, C. E., 3rd, Afanasyev, S., and Molsa, H. (2005) Gene expression in the brain and kidney of rainbow trout in response to handling stress. BMC Genomics 6, 3.

    Article  Google Scholar 

  31. Hogstrand, C., Balesaria, S., and Glover, C. N. (2002) Application of genomics and proteomics for study of the integrated response to zinc exposure in a nonmodel fish species, the rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 133, 523–535.

    Article  Google Scholar 

  32. Wester, P. W., van der Ven, L. T. M., and Vos, J. G. (2004) Comparative toxicological pathology in mammals and fish: some examples with endocrine disrupters. Toxicology 205, 27–32.

    Article  CAS  Google Scholar 

  33. Koskinen, H., Pehkonen, P., Vehniainen, E., et al. (2004) Response of rainbow trout transcriptome to model chemical contaminants. Biochem. Biophys. Res. Commun. 320, 745–753.

    Article  CAS  Google Scholar 

  34. Fort, D. J., Rogers, R. L., Thomas, J. H., Buzzard, B. O., Noll, A. M., and Spaulding, C. D. (2004) Comparative sensitivity of Xenopus tropicalis and Xenopus laevis as test species for the FETAX model. J. Appl. Toxicol. 24, 443–457.

    Article  CAS  Google Scholar 

  35. Feder, M. E. and Mitchell-Olds, T. (2003) Evolutionary and ecological functional genomics. Nat. Rev. Genet. 4, 651–657.

    Article  CAS  Google Scholar 

  36. Stearns, S. C. and Magwene, P. (2003) The naturalist in a world of genomics. Am. Nat. 161, 171–180.

    Article  Google Scholar 

  37. Oleksiak, M. F., Churchill, G. A., and Crawford, D. L. (2002) Variation in gene expression within and among natural populations. Nat. Genet. 32, 261–266.

    Article  CAS  Google Scholar 

  38. Oleksiak, M. F., Roach, J. L., and Crawford, D. L. (2005) Natural variation in cardiac metabolism and gene expression in Fundulus heteroclitus. Nat. Genet. 37, 67–72.

    CAS  Google Scholar 

  39. Chalmers, A. D., Goldstone, K., Smith, J. C., Gilchrist, M., Amaya, E., and Papalopulu, N. (2005) A Xenopus tropicalis oligonucleotide microarray works across species using RNA from Xenopus laevis. Mech. Dev. 122, 355–363.

    Article  CAS  Google Scholar 

  40. Rise, M. L., von Schalburg, K. R., Brown, G. D., et al. (2004) Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Res. 14, 478–490.

    Article  Google Scholar 

  41. Mori, T., Hiraka, I., Kurata, Y., Kawachi, H., Kishida, O., and Nishimura, K. (2005) Genetic basis of phenotypic plasticity for predator-induced morphological defenses in anuran tadpole, Rana pirica, using cDNA subtraction and microarray analysis. Biochem. Biophys. Res. Commun. 330, 1138–1145.

    Article  CAS  Google Scholar 

  42. Chen, Y. A., McKillen, D. J., Wu, S., et al. (2004) Optimal cDNA microarray design using expressed sequence tags for organisms with limited genomic information. BMC Bioinformatics 5, 191.

    Article  Google Scholar 

  43. Lorenz, M. G., Cortes, L. M., Lorenz, J. J., and Liu, E. T. (2003) Strategy for the design of custom cDNA microarrays. Biotechniques 34, 1264–1270.

    CAS  Google Scholar 

  44. Li, J., Pankratz, M., and Johnson, J. A. (2002) Differential gene expression patterns revealed by oligonucleotide versus long cDNA arrays. Toxicol. Sci. 69, 383–390.

    Article  CAS  Google Scholar 

  45. Dondeti, V. R., Sipe, C. W., and Saha, M. S. (2004) In silico gene selection strategy for custom microarray design. Biotechniques 37, 768–770, 72, 74–76.

    CAS  Google Scholar 

  46. Bowtell, D. and Sambrook, J. (2003) DNA microarrays: a molecular cloning manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  47. Konig, R., Baldessari, D., Pollet, N., Niehrs, C., and Eils, R. (2004) Reliability of gene expression ratios for cDNA microarrays in multiconditional experiments with a reference design. Nucleic Acids Res. 32, E29.

    Article  Google Scholar 

  48. Van Gelder, R. N., von Zastrow, M. E., Yool, A., Dement, W. C., Barchas, J. D., and Eberwine, J. H. (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc. Natl. Acad. Sci. USA 87, 1663–1667.

    Article  Google Scholar 

  49. Eberwine, J., Yeh, H., Miyashiro, K., et al. (1992) Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89, 3010–3014.

    Article  CAS  Google Scholar 

  50. Cox, W. G., Beaudet, M. P., Agnew, J. Y., and Ruth, J. L. (2004) Possible sources of dye-related signal correlation bias in two-color DNA microarray assays. Anal. Biochem. 331, 243–254.

    Article  Google Scholar 

  51. Tran, P. H., Peiffer, D. A., Shin, Y., Meek, L. M., Brody, J. P., and Cho, K. W. (2002) Microarray optimizations: increasing spot accuracy and automated identification of true microarray signals. Nucleic Acids Res. 30, E54.

    Article  Google Scholar 

  52. Slonim, D. K. (2002) From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32, 502–508.

    Article  CAS  Google Scholar 

  53. Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J., and Church, G. M. (1999) Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285.

    Article  CAS  Google Scholar 

  54. Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. (1998) Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14,863–14,868.

    Article  CAS  Google Scholar 

  55. Landgrebe, J., Wurst, W., and Welzl, G. (2002) Permutation-validated principal components analysis of microarray data. Genome Biol. 3, RESEARCH0019.

    Google Scholar 

  56. McShane, L. M., Shih, J. H., and Michalowska, A. M. (2003) Statistical issues in the design and analysis of gene expression microarray studies of animal models. J. Mammary Gland Biol. Neoplasia 8, 359–374.

    Article  Google Scholar 

  57. Cui, X. and Churchill, G. A. (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol. 4, 210.

    Article  Google Scholar 

  58. Whitehead, A. and Crawford, D. L. (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol. 6, R13.

    Article  Google Scholar 

  59. Tusher, V. G., Tibshirani, R., and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121.

    Article  CAS  Google Scholar 

  60. Chuaqui, R. F., Bonner, R. F., Best, C. J., et al. (2002) Post-analysis follow-up and validation of microarray experiments. Nat. Genet. 32, 509–514.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Sipe, C.W., Saha, M.S. (2007). The Use of Microarray Technology in Nonmammalian Vertebrate Systems. In: Rampal, J.B. (eds) Microarrays. Methods in Molecular Biology, vol 382. Humana Press. https://doi.org/10.1007/978-1-59745-304-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-304-2_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-944-4

  • Online ISBN: 978-1-59745-304-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics