Skip to main content

Construction of Oligonucleotide Microarrays (Biochip) Using Heterobifunctional Reagents

  • Protocol
Microarrays

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 381))

Abstract

A number of hetero- and homobifunctional reagents have been reported to immobilize biomolecules on a variety of supports. However, efforts are on to search for a method, which is relatively simple, involving minimum of steps, cost effective, easy to reproduce, and that produces stable oligonucleotide arrays. Two new reagents, viz., [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)- triethoxysilylpropyl-3-amine], and [N-(3-trifluoroethanesulfonyloxypropyl)anthraquinone-2- carboxamide] have been designed considering the above points. These reagents contain different functional groups at their two ends. In [N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)- triethoxysilylpropyl-3-amine], one end (triethoxysilyl) is capable of binding to the virgin glass surface and the other one consists of trifluoroethanesulfonate (tresyl) function specific toward aminoalkyl and mercaptoalkyl functionalities, which are easy to introduce at the 3′- or 5′-end of oligonucleotides. Likewise, in [N-(3-trifluoroethanesulfonyloxypropyl)anthraquinone-2- carboxamide], one end consists of photoactivatable moiety (anthraquinone) capable of reacting to a C-H containing surface and the tresyl function at the other end reacts specifically with aminoalkyl and mercaptoalkyl functionalities in modified oligonucleotides. These reagents have successfully been utilized to construct a number of oligonucleotide arrays and subsequently used for the detection of mismatches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pirrung, M. C. (2002) How to make DNA chip. Angew. Chem. Int. Ed. 41, 1276–1289.

    Article  CAS  Google Scholar 

  2. Seliger, H., Hinz, M., and Happ, E. (2003) Arrays of immobilized oligonucleotides—Contributions to nucleic acids technology. Curr. Pharm. Biotechnol. 4, 379–395.

    Article  CAS  Google Scholar 

  3. Ramsay, G. (1998) DNA chips: state of the art. Nat. Biotech. 16, 40–44.

    Article  CAS  Google Scholar 

  4. Nielsen, P. S., Ohlsson, H., Alsbo, C., Andersen, M. S., and Kauppinen, S. (2005) Expression profiling by oligonucleotide microarrays spotted on coated polymer slides. J. Biotech. 116, 125–134.

    Article  CAS  Google Scholar 

  5. Gerhold, D., Rushmore, T., and Caskey, C. T. (1999) DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24, 168–173.

    Article  CAS  Google Scholar 

  6. Van Ness, J., Kalbfleisch, S., Petrie, C. R., Reed, M. W., Tabone, J. C., and Vermeulen, N. M. (1991) A versatile solid support system for oligodeoxynucleotide probe-based hybridization assays. Nucleic Acids Res. 19, 3345–3350.

    Article  Google Scholar 

  7. Beier, M. and Hoheisel, J. D. (1999) Versatile derivatisation of solid support media for covalent bonding on DNA-microchips. Nucleic Acids Res. 27, 1970–1977.

    Article  CAS  Google Scholar 

  8. Halliwell, C. M. and Cass, A. E. G. (2001) A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces. Anal. Chem. 73, 2476–2483.

    Article  CAS  Google Scholar 

  9. Britcher, I. G., Kehoe, D. C., Matisons, J. G., Smart, R. S. C., and Swincer, A. G. (1993) Silicones on glass surfaces. 2. Coupling agent analogs. Langmuir 9, 1609–1613.

    Article  CAS  Google Scholar 

  10. Proudnikov, D., Timofeev, E., and Mirzabekov, A. (1998) Immobilization of DNA in Polyacrylamide gel for the Manufacture of DNA and DNA-oligonucleotide microchips. Anal. Biochem. 259, 34–41.

    Article  CAS  Google Scholar 

  11. Matson, R. S., Rampal, J., Pentoney, S. L., Anderson, P. D., and Coassin, P. (1995) Biopolymer synthesis on polypropylene supports: oligonucleotide arrays. Anal. Biochem. 224, 110–116.

    Article  CAS  Google Scholar 

  12. Dequaire, M. and Heller, A. (2002) Screen printing of nucleic acid detecting carbon electrodes. Anal. Chem. 74, 4370–4377.

    Article  CAS  Google Scholar 

  13. Fixe, F., Dufva, M., Telleman, P., and Christensen, C. B. V. (2004) Funtionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res. 32, E9.

    Article  CAS  Google Scholar 

  14. Strother, T., Cai, W., Zhao, X., Hamers, R. J., and Smith, L. M. (2000) Synthesis and characterization of DNA-modified Silicon(111) surfaces. J. Am. Chem. Soc. 122, 1205–1209.

    Article  CAS  Google Scholar 

  15. Chrisey, I. A., O’Ferrall, C. E., Spargo, B. J., Dulcey, C. S., and Calvert, J. M., (1996) Fabrication of patterned DNA surfaces. Nucleic Acids Res. 24, 3040–3047.

    Article  CAS  Google Scholar 

  16. Healey, B. G., Matson, R. S., and Walt, D. R. (1997) Fiberoptic DNA sensor array capable of detecting point mutations. Anal. Biochem. 251, 270–279.

    Article  CAS  Google Scholar 

  17. Steel, A. B., Levicky, R. L., Herne, T. M., and Tarlov, M. J. (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys. J. 79, 975–981.

    Article  CAS  Google Scholar 

  18. Csáki, A., Möller, R., Straube, W., Köhler, J. M., and Fritzsche, W. (2001) DNA monolayer on gold substrates characterized by nanoparticle labeling and scanning force microscopy. Nucleic Acids Res. 29, E81.

    Article  Google Scholar 

  19. Cha, T.-W., Boiadjiev, V., Lozano, J., Yang, H., and Zhu, X.-Y. (2002) Immobilization of oligonucleotide on poly(ethylene glycol) brush-coated Si surfaces. Anal. Biochem. 311, 27–32.

    Article  CAS  Google Scholar 

  20. Southern, E. M., Maskos, U., and Elder, J. K. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017.

    Article  CAS  Google Scholar 

  21. Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T., and Solas, D. (1991) Light directed spatially addressable parallel chemical synthesis. Science 251, 767–773.

    Article  CAS  Google Scholar 

  22. Pease, A. C., Solas, D., Sullivan, E. J., Cronin, M. T., Holmes, C. P., and Fodor, S. P. (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91, 5022–5026.

    Article  CAS  Google Scholar 

  23. Yong-Sung, C., Do-Kyun, K., and Young-Soo, K. (2002) Development of a new DNA chip microarray by hydrophobic interaction. Colloids and Surfaces A 201, 261–264.

    Article  Google Scholar 

  24. Zammatteo, N., Jeanmart, L., Hamels, S., et al. (2000) Comparison between different strategies of covalent attachment of DNA to glass surfaces to build DNA microarrays. Anal. Biochem. 280, 143–150.

    Article  CAS  Google Scholar 

  25. Kumar, A., Larsson, O., Pardi, D., and Liang, Z. (2000) Silanized nucleic acids: a general platform for DNA immobilization. Nucleic Acids Res. 28, E71.

    Article  CAS  Google Scholar 

  26. Moller, R., Csaki, A., Kohler, A. M., and Fritzsche, W. (2000) DNA probes on chip surfaces studied by scanning force microscopy using specific binding of colloidal gold. Nucleic Acids Res. 28, E91.

    Article  CAS  Google Scholar 

  27. Lamture, J. B., Beattie, K. L., Burke, B. E., et al. (1994) Direct detection of nucleic acid hybridization on the surface of a charge coupled device. Nucleic Acids Res. 22, 2121–2125.

    Article  CAS  Google Scholar 

  28. Chrisey, L. A., Lee, G. U., and O’Ferrall, C. E. (1996) Covalent attachment of synthetic DNA to self-assembled monolayer films. Nucleic Acids Res. 24, 3031–3039.

    Article  CAS  Google Scholar 

  29. Strother, T., Hamers, R. J., and Smith, L. M. (2000) Covalent attachment of oligodeoxyribonucleotides to amine-modified Si(001) surfaces. Nucleic Acids Res. 28, 3535–3541.

    Article  CAS  Google Scholar 

  30. Kumar, P., Choithani, J., and Gupta, K. C. (2004) Construction of oligonucleotide arrays on a glass surface using a heterobifunctional reagent, N-(2-trifluoroethanesulfonatoethyl)-N-(methyl)-triethoxysilylpropyl-3-amine (NTMTA). Nucleic Acids Res. 32, E80.

    Article  CAS  Google Scholar 

  31. Kumar, P., Agrawal, S. K., Misra, A., and Gupta, K. C. (2004) A new heterobifunctional reagent for immobilization of biomolecules on glass surface. BioMed. Chem. Lett. 14, 1097–1099.

    Article  CAS  Google Scholar 

  32. Koch, T., Jacobsen, N., Fensholdt, J., Boas, U., Fenger, M., and Jakobsen, M. H. (2000) Photochemical immobilization of anthraquinone conjugated oligonucleotides and PCR amplicons on solid surfaces. Bioconjug. Chem. 11, 474–483.

    Article  CAS  Google Scholar 

  33. Kumar, P., Gupta, K. C., and Gandhi, R. P. (2003) UV light-aided immobilization of oligonucleotides on glass surface using N-(3-trifluoroethanesulfonyloxypropyl) anthaquinone-2-carboxamide (NTPAC) and detection of single nucleotide mismatch. J. Indian Chem. Soc. 80, 1193–1199.

    CAS  Google Scholar 

  34. Yaqub, M. and Guire, P. (1974) Covalent immobilization of L-asparaginase with a photochemical reagent. J. Biomed. Mater. Res. 8, 291–297.

    Article  CAS  Google Scholar 

  35. Wilson, D. F., Miyata, Y., Erecinska, M., and Vanerkooi, J. M. (1975) An aryl azide suitable for photoaffinity labeling of amine groups in proteins. Arch. Biochem. Biophys. 17, 104–107.

    Article  Google Scholar 

  36. Sigrist, H., Gao, H., and Wegmuller, B. (1992) Light-dependent, covalent immobilization of biomolecules on “inert” surfaces. Biotechnology 10, 1026–1028

    Article  CAS  Google Scholar 

  37. Gaur, R. K., Sharma, P., and Gupta, K. C. (1989) A simple method for the introduction of thiol group at 5′-termini of oligodeoxynucleotides. Nucleic Acids Res. 17, 4404.

    Article  CAS  Google Scholar 

  38. Gupta, K. C., Sharma, P., Kumar, P., and Sathyanarayana, S. (1991) A general method for the synthesis of 3′-sulfhydryl and phosphate group containing oligonucleotides. Nucleic Acids Res. 19, 3019–3025.

    Article  CAS  Google Scholar 

  39. Kumar, P., Bhatia, D., Rastogi, R. C., and Gupta, K. C. (1996) Solid phase synthesis and purification of 5′-mercaptoalkylated oligonucleotides. BioMed. Chem. Lett. 6, 683–688.

    Article  CAS  Google Scholar 

  40. Agrawal, S., Christodoulou, C., and Gait, M. J. (1986) Efficient methods for attaching non-radioactive labels to the 5′ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 14, 6227–6245.

    Article  CAS  Google Scholar 

  41. Connolly, B. A. (1987) The synthesis of oligonucleotides containing a primary amino group at the 5′-terminus. Nucleic Acids Res. 15, 3131–3139.

    Article  CAS  Google Scholar 

  42. Beaucage, S. L. and Iyer, R. P. (1993) The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49, 1925–1963.

    Article  CAS  Google Scholar 

  43. Beaucage, S. L. and Iyer, R. P. (1992) Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48, 2223–2311.

    Article  CAS  Google Scholar 

  44. Gryaznov, S. M. and Letsinger, R. L. (1993) Anchor for one step release of 3′-aminooligonucleotides from a solid support. Tetrahedron Lett. 34, 1261–1264.

    Article  CAS  Google Scholar 

  45. Agrawal, S. (ed.) (1994) Protocols for Oligonucleotides and Analogs, Synthesis and Properties. Humana Press, Totowa, NJ, pp. 465–496.

    Google Scholar 

  46. Truffert, J. C., Lorthioir, O., Asseline, U., Thuong, N. T., and Brack, A. (1994) On-line solid phase synthesis of oligonucleotide-peptide hybrids using silica supports. Tetrahedron Lett. 35, 2353–2356.

    Article  CAS  Google Scholar 

  47. Atkinson, T. and Smith, M. (1984) Oligonucleotide synthesis, in A Practical Approach, (Gait M. J., ed.), IRL Press, Oxford, UK, pp. 35–81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Choithani, J., Vaijayanthi, B., Kumar, P., Gupta, K.C. (2007). Construction of Oligonucleotide Microarrays (Biochip) Using Heterobifunctional Reagents. In: Rampal, J.B. (eds) Microarrays. Methods in Molecular Biology™, vol 381. Humana Press. https://doi.org/10.1007/978-1-59745-303-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-303-5_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-589-7

  • Online ISBN: 978-1-59745-303-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics