Skip to main content

Whole-Mount Immunoelectron Tomography of Chromosomes and Cells

  • Protocol
Electron Microscopy

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 369))

Abstract

Standard immunogold-labeling methods in transmission electron microscopy (TEM) are unable to locate immunogold particles in the depth direction. This inability does not only concern bulky whole mounts, but also sections. A partial solution to the problem is stereo inspection. However, three-dimensional reconstruction of immunogold-labeled structures, that is, immuno-electron tomography (IET), is a correct solution for this inconsistency. Striking improvement in resolution is achieved: the 1.4-nm immunogold particles are shown in IET that are not detected in the original tilt series. IET is not restricted to laboratories with advanced medium- or high-voltage TEM and super-computing facilities; the methods we have developed for whole-mounted chromosomes and also for whole-mounted cytoskeleton of fibroblasts work remarkably well with ordinary 80-kV TEMs equipped with a goniometer to collect tilt series for IET on film. In addition, free programs are available to produce three-dimensional reconstructions even without high-performance computers. These improvements make it possible to many laboratories without modern facilities to perform IET reconstruction with standard TEM apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engelhardt, P. (2006) Three-dimensional reconstruction of chromosomes using electron tomography, in Electron Microscopy Methods and Protocols, 2nd ed (Kuo, J., ed.), Humana, Totowa, NJ, pp.365–385.

    Google Scholar 

  2. Engelhardt, P. (2000) Electron tomography of chromosome structure, in Encyclopedia of Analytical Chemistry (Meyers, R. A., ed.), vol. 6, John Wiley & Sons Ltd, Chichester, pp. 4948–4984. Available at: http://www.lce.hut.fi/~engelhar/. Accessed May 30, 2006.

    Google Scholar 

  3. Uchiyama, S., Kobayashi, S., Takata, H., et al. (2005) Proteome analysis of human metaphase chromosomes. J. Biol. Chem. 280, 16994–17004.

    Article  CAS  PubMed  Google Scholar 

  4. Stacey, G. (1998) Chick embryo fibroblast preparation, in Cell & Tissue Culture: Laboratory Procedures (Doyle, A., Griffiths, J. B., and Newell, D. G., eds.), John Wiley and Sons Ltd., England, pp. 3E:1.1–3E:1.3.

    Google Scholar 

  5. Meriläinen, J., Lehto, V. P., and Wasenius, V. M. (1997) FAP52, a novel, SH3 domain-containing focal adhesion protein. J. Biol. Chem. 272, 23278–23284.

    Article  PubMed  Google Scholar 

  6. Lehto, V. P. and Virtanen, I. (1985) Vinculin in cultured bovine lens-forming cells. Cell Differ. 16, 153–160.

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, C. and Laemmli, U. (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29, 171–181.

    Article  CAS  PubMed  Google Scholar 

  8. Spector, D., Goldman, R., and Leinwand, L. (1998) Chromosome isolation for biochemical and morphological analysis, in Cells: A Laboratory Manual (Janssen, K., ed.), vol. 1: Culture and Biochemical Analysis of Cells, Cold Springer Harbor Laboratory Press, New York, pp. 49.1–49.12.

    Google Scholar 

  9. Sone, T., Iwano, M., Kobayashi, S., et al. (2002) Changes in chromosomal surface structure by different isolation conditions. Arch. Histol. Cytol. 65, 445–455.

    Article  PubMed  Google Scholar 

  10. Uchiyama, S., Kobayashi, S., Takata, H., et al. (2004) Protein composition of human metaphase chromosomes analyzed by two-dimensional electrophoreses. Cytogenet. Genome Res. 107, 49–55.

    Article  CAS  PubMed  Google Scholar 

  11. Gasser, S. and Laemmli, U. (1987) Improved methods for the isolation of individual and clustered mitotic chromosomes. Exp. Cell Res. 173, 85–98.

    Article  CAS  PubMed  Google Scholar 

  12. Lucocq, J. (1992) Particulate markers for immunoelectron Microscopy, in Fine Structure Immunocytochemistry (Griffiths, G., ed.), Springer-Verlag, Berlin, pp. 279–305.

    Google Scholar 

  13. Slot, J. W. and Geuze, H. J. (1985) A new method for preparing gold probes for multiple-labelling cytochemistry. Eur. J. Cell Biol. 38, 87–93.

    CAS  PubMed  Google Scholar 

  14. Gassmann, R., Henzing, A. J., and Earnshaw, W. C. (2004) Novel components of human mitotic chromosomes identified by proteomic analysis of the chromosome scaffold fraction. Chromosoma 113, 385–397.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Engelhardt, P., Meriläinen, J., Zhao, F., Uchiyama, S., Fukui, K., Lehto, VP. (2007). Whole-Mount Immunoelectron Tomography of Chromosomes and Cells. In: Kuo, J. (eds) Electron Microscopy. Methods in Molecular Biology™, vol 369. Humana Press. https://doi.org/10.1007/978-1-59745-294-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-294-6_19

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-573-6

  • Online ISBN: 978-1-59745-294-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics