Skip to main content

Phenotyping of Abiotic Responses and Hormone Treatments in Arabidopsis

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 479))

Abstract

The disruption or modulation of signal transduction pathways does not always lead to drastic changes in plant growth and development. Therefore, many loss- or gain-of-function lines do not exhibit an obvious phenotype under normal greenhouse conditions. To be able to assign biological functions to these genes, the mutants need to be evaluated with a broad spectrum of assays to uncover conditional phenotypes.

Here we provide an overview on how to evaluate plants in their development and their response to abiotic factors such as light, hormones, and different stressors. The assessment ofthe behavior ofa plant under these conditions can be used to correlate a biological role with a genotype. This phenotypic analysis can be used for profiling of mutants.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bolle, C. (2008) Phenotyping of Arabidopsis mutants for developmental effects of gene deletions.

    Google Scholar 

  2. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.

    Article  CAS  Google Scholar 

  3. Gubler, F., Millar, A. A., and Jacobsen, J. V., (2005) Dormancy release, ABA and preharvest sprouting. Curr. Opin. Plant Biol. 8, 183–187.

    Article  PubMed  CAS  Google Scholar 

  4. Christmann, A., Moes, D., Himmelbach, A., Yang, Y., Tang, Y., and Grill, E. (2006) Integration of abscisic acid signalling into plant responses. Plant Biol. (Stuttpj) 8, 314–325.

    Article  CAS  Google Scholar 

  5. Verslues, P. E. and Zhu, J. K. (2005) Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans. 33, 375–379.

    Article  PubMed  CAS  Google Scholar 

  6. Barrero, J. M., Piqueras, P., Gonzalez- Guzman, M., Serrano, R., Rodriguez, P. L., Ponce, M. R, and Micol, J.L. (2005) A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. J. Exp. Bot. 56, 2071–2083.

    Article  PubMed  CAS  Google Scholar 

  7. Leyser, O. (2006) Dynamic integration of auxin transport and signalling. Curr. Biol. 16, R424–433.

    Article  PubMed  CAS  Google Scholar 

  8. Teale, W. D., Paponov, I. A., and Palme, K (2006) Auxin in action: Signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7,847–859.

    Article  PubMed  CAS  Google Scholar 

  9. Woodward, A. W. and Bartel, B. (2005) Auxin: regulation, action, and interaction. Ann. Bot. (Lond) 95, 707–735.

    Article  CAS  Google Scholar 

  10. Dharmasiri, N., Dharmasiri, S., and Estelle, M. (2005) The F-box protein TIR1 is an auxin receptor. Nature 435, 441–445.

    Article  PubMed  CAS  Google Scholar 

  11. Kepinski, S. and Leyser, O. (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435,446–451.

    Article  PubMed  CAS  Google Scholar 

  12. Ulmasov, T., Murfett, J., Hagen, G., and Guilfoyle, T. J. (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9,1963–1971.

    PubMed  CAS  Google Scholar 

  13. Bishop, G.J. and Koncz, C. (2002) Brassinosteroids and plant steroid hormone signaling. Plant Cell 14(Suppl.), S97–S110.

    PubMed  CAS  Google Scholar 

  14. Wang, Z. Y., Wang, Q., Chong, K., Wang, F. , Wang, L., Bai, M., and Jia, C. (2006) The brassinosteroid signal transduction pathway. Cell Res. 16, 427–434.

    Article  PubMed  Google Scholar 

  15. Katsuhiko, S., Uzawa, J., Hana, S. J., Yoneyamac, K., Takeuchic, Y., Yoshida, S., Asami, T. (2002) Brz220 a novel brassinosteroid biosynthesis inhibitor: stereochemical structure-activity relationship. Tetrahedron: Asymmetry 13,1875–1878.

    Article  Google Scholar 

  16. Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., and Szekeres, M. (2002) Regulation of transcript levels of the Arabidopsis cytochrome p450 genes involved in brassinosteroid biosynthesis. Plant Physiol. 130, 504–513.

    Article  PubMed  CAS  Google Scholar 

  17. Fujioka, S., Li, J., Choi, Y. H., Seto, H., Takatsuto, S., Noguchi, T., Watanabe, T., Kuriyama, H., Yokota, T., Chory, J., and Sakurai, A. (1997) The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell 9, 1951–1962.

    PubMed  CAS  Google Scholar 

  18. Ferreira, F. J. and Kieber, J. J. (2005) Cytokinin signaling. Curr. Opin. Plant Biol. 8, 518–525.

    Article  PubMed  CAS  Google Scholar 

  19. Riefler, M., Novak, O., Strnad, M., and Schmiilling, T. (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18, 40–54.

    Article  PubMed  CAS  Google Scholar 

  20. Werner, T., Motyka, V., Laucou, V., Smets, R, Van Onckelen, H., and Schmulling, T. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15, 2532–2550.

    Article  PubMed  CAS  Google Scholar 

  21. Arnon, D.I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.

    Article  CAS  Google Scholar 

  22. Chen, Y. F., Etheridge, N., and Schaller, G. E. (2005) Ethylene signal transduction. Ann. Bot. (Lond) 95, 901–915.

    Article  CAS  Google Scholar 

  23. De Paepe, A. and Straeten, D. Van der (2005) Ethylene biosynthesis and signaling: An overview. Vitam. Horm. 72, 399–430.

    Article  PubMed  CAS  Google Scholar 

  24. Etheridge, N., Hall, B. P., and Schaller, G. E. (2006) Progress report: ethylene signaling and responses. Planta 223, 387–391.

    Article  PubMed  CAS  Google Scholar 

  25. Roman, G., Lubarsky, B., Kieber, J. J., Rothenberg, M., and Ecker, J. R. (1995) Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: Five novel mutant loci integrated into a stress response pathway. Genetics 139, 1393–1409.

    PubMed  CAS  Google Scholar 

  26. Sun, T. P. and Gubler, F. (2004) Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol. 55, 197–223.

    Article  PubMed  CAS  Google Scholar 

  27. Swain, S. M. and Singh, D. P. (2005) Tall tales from sly dwarves: novel functions of gibberellins in plant development. Trends Plant Sei. 10,123–129.

    Article  CAS  Google Scholar 

  28. Thomas, S. G. and Sun, T. P. (2004) Update on gibberellin signaling. A tale of the tall and the short. Plant Physiol. 135, 668–676

    Article  CAS  Google Scholar 

  29. Griffiths, J., Murase, K., Rieu, I., Zentella, R, Zhang, Z. L., Powers, S.J., Gong, F., Phillips, A. L., Hedden, P., Sun, T. P., and Thomas, S. G. (2006) Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell IS, 3399-3414.

    Google Scholar 

  30. Sun, T. P. and Kamiya, Y. (1994) The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Plant Cell 6,1509–1518.

    PubMed  CAS  Google Scholar 

  31. Liechti, R. and Farmer, E. E. (2003) The jasmonate biochemical pathway. Sei. STKE 2003, CM18.

    Google Scholar 

  32. Turner, J. G., Ellis, C., and Devoto, A. (2002) The jasmonate signal pathway. Plant Cell 14(Suppl.), S153–S164.

    PubMed  CAS  Google Scholar 

  33. Valliyodan, B. and Nguyen, H. T. (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 9, 189– 195.

    Article  PubMed  CAS  Google Scholar 

  34. Mahajan, S. and Tuteja, N. (2005) Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444, 139–158.

    Article  PubMed  CAS  Google Scholar 

  35. Xiong, L., Schumaker, K. S., and Zhu, J. K. (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 14(Suppl.), SI 65– S183.

    Google Scholar 

  36. Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273.

    Article  PubMed  CAS  Google Scholar 

  37. Roelfsema, M. R and Hedrich, R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol. 167, 665–691.

    Article  PubMed  CAS  Google Scholar 

  38. Thomashow, M. F. (1999) PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 571–599.

    Article  PubMed  CAS  Google Scholar 

  39. Baniwal, S. K., Bharti, K., Chan, K. Y., Fauth, M., Ganguli, A., Kotak, S., Mishra, S. K, Nover, L., Port, M., Scharf, K. D., Tripp, J., Weber, C., Zielinski, D., and von Koskull Döring, P. (2004) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29, 471–487.

    Article  PubMed  CAS  Google Scholar 

  40. Chinnusamy, V., Zhu, J., and Zhu, J. K. (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. (N T) 27, 141–177.

    Article  CAS  Google Scholar 

  41. Apel, K. and Hirt, H. (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399.

    Article  PubMed  CAS  Google Scholar 

  42. Franklin, K. A., Larner, V. S., and Whitelam, G. C. (2005) The signal transducing photoreceptors of plants. Int. J. Dev. Biol. 49, 653–664.

    Article  PubMed  CAS  Google Scholar 

  43. Chen, M., Chory, J., and Fankhauser, C. (2004) Light signal transduction in higher plants. Annu. Rev. Genet. 38, 87–117.

    Article  PubMed  CAS  Google Scholar 

  44. Sullivan, J. A. and Deng, X. W. (2003) From seed to seed: The role of photoreceptors in Ambidopsis development. Dev. Biol. 260, 289–297.

    Article  PubMed  CAS  Google Scholar 

  45. Fankhauser, C. and Casai, J. J. (2004) Phenotypic characterization of a photomorphogenic mutant. Plant J. 39, 747–760.

    Article  PubMed  CAS  Google Scholar 

  46. Ulm, R and Nagy, F. (2005 ) Signalling and gene regulation in response to ultraviolet light. Curr. Opin. Plant Biol. 8, 477–482

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bolle, C. (2009). Phenotyping of Abiotic Responses and Hormone Treatments in Arabidopsis . In: Pfannschmidt, T. (eds) Plant Signal Transduction. Methods in Molecular Biology, vol 479. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-289-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-289-2_3

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-943-7

  • Online ISBN: 978-1-59745-289-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics