Skip to main content

Prospective Identification of Cancer Stem Cells with the Surface Antigen CD133

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 568))

Summary

Cancer cells do not share equal tumor-initiating potential. Only cancer stem cells (CSCs) can initiate cancer, which is important clinically because they should be eradicated to treat cancer patients. The purpose of experimental methods for identification of CSC is to isolate CSCs among various kinds of cancer cells in cancer masses. To identify CSCs, cancer masses derived from patients should be dissociated into single cells. Dissociated cells are classified into several groups according to expression status of one or several surface proteins using magnetic cell sorting (MACS) or fluorescence-activated cell sorting (FACS) methods. Sorted cells are cultured in a specialized culture medium for stem cells or inoculated into the primary cancer site of immunodeficient mice. In this chapter detailed experimental methods will be described and glioblastoma will be used as an example of solid cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature. 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  2. Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828.

    PubMed  CAS  Google Scholar 

  3. Piccirillo, S. G., Reynolds, B. A., Zanetti, N., Lamorte, G., Binda, E., Broggi, G., Brem, H., Olivi, A., Dimeco, F., and Vescovi, A. L. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour initiating cells. Nature. 444, 761–765.

    Article  PubMed  CAS  Google Scholar 

  4. Stupp, R. and Hegi, M. E. (2007) Targeting brain-tumor stem cells. Nat. Biotechnol. 25, 193–194.

    Article  PubMed  CAS  Google Scholar 

  5. Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., and Rich, J. N. (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 444, 756–760.

    Article  PubMed  CAS  Google Scholar 

  6. Dean, M., Fojo, T., and Bates, S. (2005) Tumour stem cells and drug resistance. Nat. Rev. Cancer. 5, 275–284.

    Article  PubMed  CAS  Google Scholar 

  7. Lee, J., Kotliarova, S., Kotliarov, Y., Li, A., Su, Q., Donin, N. M., Pastorino, S., Purow, B. W., Christopher, N., Zhang, W., Park, J. K., and Fine, H. A. (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell. 9, 391–403.

    Article  PubMed  CAS  Google Scholar 

  8. Rietze, R. L., Valcanis, H., Brooker, G. F., Thomas, T., Voss, A. K., and Bartlett, P. F. (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature. 412, 736–739.

    Article  PubMed  CAS  Google Scholar 

  9. Nunes, M. C., Roy, N. S., Keyoung, H. M., Goodman, R. R., McKhann, G., 2nd, Jiang, L., Kang, J., Nedergaard, M., and Goldman, S. A. (2003) Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain. Nat. Med. 9, 439–447.

    Article  PubMed  CAS  Google Scholar 

  10. Bonnet, D. and Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med. 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  11. Matsui, W., Huff, C. A., Wang, Q., Malehorn, M. T., Barber, J., Tanhehco, Y., Smith, B. D., Civin, C. I., and Jones, R. J. (2004) Characterization of clonogenic multiple myeloma cells. Blood. 103, 2332–2336.

    Article  PubMed  CAS  Google Scholar 

  12. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U. S. A. 100, 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  13. O’Brien, C. A., Pollett, A., Gallinger, S., and Dick, J. E. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445, 106–110.

    Article  PubMed  Google Scholar 

  14. Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature. 445, 111–115.

    Article  PubMed  CAS  Google Scholar 

  15. Schatton, T., Murphy, G. F., Frank, N. Y., Yamaura, K., Waaga-Gasser, A. M., Gasser, M., Zhan, Q., Jordan, S., Duncan, L. M., Weishaupt, C., Fuhlbrigge, R. C., Kupper, T. S., Sayegh, M. H., and Frank, M. H. (2008) Identification of cells initiating human melanomas. Nature. 451, 345–349.

    Article  PubMed  CAS  Google Scholar 

  16. Vescovi, A. L., Galli, R., and Reynolds, B. A. (2006) Brain tumour stem cells. Nat. Rev. Cancer. 6, 425–436.

    Article  PubMed  CAS  Google Scholar 

  17. Sanai, N., Alvarez-Buylla, A., and Berger, M. S. (2005) Neural stem cells and the origin of gliomas. N. Engl. J. Med. 353, 811–822.

    Article  PubMed  CAS  Google Scholar 

  18. Zborowski, M. and Chalmers, J. J. (eds.) (2007) Magnetic Cell Separation. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  19. Macey, M. G. (ed.) (2007) Flow Cytometry and Cell Sorting. Humana, Totowa, NJ.

    Google Scholar 

  20. Fidler, I. J. (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer. 3, 453–458.

    Article  PubMed  CAS  Google Scholar 

  21. Panchision, D. M., Chen, H. L., Pistollato, F., Papini, D., Ni, H. T., and Hawley, T. S. (2007) Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 25, 1560–1570.

    Article  PubMed  CAS  Google Scholar 

  22. Schmid, I., Uittenbogaart, C. H., Krall, W. J., Braun, J., and Giorgi, J. V. (1992) Dead cell discrimination with 7-amio-actinomycin D in combination with dual color immunofluorescence in single laser flow cytometry. Cytometry. 13, 204–208.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Joo, K.M., Nam, DH. (2009). Prospective Identification of Cancer Stem Cells with the Surface Antigen CD133. In: Yu, J. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 568. Humana Press. https://doi.org/10.1007/978-1-59745-280-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-280-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-938-3

  • Online ISBN: 978-1-59745-280-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics