Skip to main content

Genome-Wide DNA Methylation Profiling: The mDIP-Chip Technology

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 568))


Aberrant DNA methylation is one of the major characteristics of tumor cells in addition to genetic and other epigenetic alterations. Evidence shows that both regional hypermethylation and global hypomethylation can occur in cancer cells. Increased DNA methylation can be found at select tumor-suppressor gene promoters, causing the silencing of these genes in tumorigenic cells. At the same time, a global decrease in DNA methylation is frequently observed in cancer cells, which may contribute to genome instability. Unlike genetic mutations, hypermethylation at tumor-suppressor gene promoters can be reversed with epigenetic therapy by using DNA demethylating agents.

To better understand the mechanisms of cancer initiation and progression, and to better assess the effects of epigenetic therapy, a reliable high-throughput method for genome-wide DNA methylation analysis is needed. Recently, the process of coupling methylated DNA immunoprecipitation (mDIP) with microarray hybridization has been proven to be a successful strategy to map genome-wide DNA methylation patterns in different cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Robertson, K.D. and Wolffe, A.P. (2000) DNA methylation in health and disease. Nature reviews, 1, 11–9.

    PubMed  CAS  Google Scholar 

  2. Bestor, T.H. (2000) The DNA methyltransferases of mammals. Human molecular genetics, 9, 2395–402.

    Article  PubMed  CAS  Google Scholar 

  3. Jones, P.A. and Laird, P.W. (1999) Cancer epigenetics comes of age. Nature genetics, 21, 163–7.

    Article  PubMed  CAS  Google Scholar 

  4. Costello, J.F., Fruhwald, M.C., Smiraglia, D.J., Rush, L.J., Robertson, G.P., Gao, X., Wright, F.A., Feramisco, J.D., Peltomaki, P., Lang, J.C., et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature genetics, 24, 132–8.

    Article  PubMed  CAS  Google Scholar 

  5. Feinberg, A.P. and Vogelstein, B. (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 301, 89–92.

    Article  PubMed  CAS  Google Scholar 

  6. Claus, E.B., Petruzella, S., Matloff, E. and Carter, D. (2005) Prevalence of BRCA1 and BRCA2 mutations in women diagnosed with ductal carcinoma in situ. The Journal of the American Medical Association, 293, 964–9.

    Article  CAS  Google Scholar 

  7. Aaltonen, L.A., Salovaara, R., Kristo, P., Canzian, F., Hemminki, A., Peltomaki, P., Chadwick, R.B., Kaariainen, H., Eskelinen, M., Jarvinen, H., et al. (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. The New England journal of medicine, 338, 1481–7.

    Article  PubMed  CAS  Google Scholar 

  8. Feinberg, A.P., Ohlsson, R. and Henikoff, S. (2006) The epigenetic progenitor origin of human cancer. Nature reviews, 7, 21–33.

    Article  PubMed  CAS  Google Scholar 

  9. Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V.K., Attwood, J., Burger, M., Burton, J., Cox, T.V., Davies, R., Down, T.A., et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nature genetics, 38, 1378–85.

    Article  PubMed  CAS  Google Scholar 

  10. Meissner, A., Gnirke, A., Bell, G.W., Ramsahoye, B., Lander, E.S. and Jaenisch, R. (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic acids research, 33, 5868–77.

    Article  PubMed  CAS  Google Scholar 

  11. Weber, M., Davies, J.J., Wittig, D., Oakeley, E.J., Haase, M., Lam, W.L. and Schubeler, D. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature genetics, 37, 853–62.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J. and Jacobsen, S.E. (2007) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS biology, 5, e129.

    Article  PubMed  Google Scholar 

  13. Zilberman, D., Gehring, M., Tran, R.K., Ballinger, T. and Henikoff, S. (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature genetics, 39, 61–9.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Shinn, P., Pellegrini, M., Jacobsen, S.E., et al. (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell, 126, 1189–201.

    Article  PubMed  CAS  Google Scholar 

  15. Keshet, I., Schlesinger, Y., Farkash, S., Rand, E., Hecht, M., Segal, E., Pikarski, E., Young, R.A., Niveleau, A., Cedar, H., et al. (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nature genetics, 38, 149–53.

    Article  PubMed  CAS  Google Scholar 

  16. Weber, M., Hellmann, I., Stadler, M.B., Ramos, L., Paabo, S., Rebhan, M. and Schubeler, D. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature genetics, 39, 457–66.

    Article  PubMed  CAS  Google Scholar 

  17. Clark, S.J., Harrison, J., Paul, C.L. and Frommer, M. (1994) High sensitivity mapping of methylated cytosines. Nucleic acids research, 22, 2990–7.

    Article  PubMed  CAS  Google Scholar 

  18. Herman, J.G., Latif, F., Weng, Y., Lerman, M.I., Zbar, B., Liu, S., Samid, D., Duan, D.S., Gnarra, J.R., Linehan, W.M., et al. (1994) Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 91, 9700–4.

    Article  PubMed  CAS  Google Scholar 

  19. Cameron, E.E., Baylin, S.B. and Herman, J.G. (1999) p15(INK4B) CpG island methylation in primary acute leukemia is heterogeneous and suggests density as a critical factor for transcriptional silencing. Blood, 94, 2445–51.

    PubMed  CAS  Google Scholar 

Download references


We thank Dr. Howard Cedar at Hebrew University and Drs. Xiaoyu Zhang and Steve Jacobsen at UCLA for sharing with us their technical notes. Funding support for this work is from National Institutes of Health.

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Shen, Y., Fouse, S.D., Fan, G. (2009). Genome-Wide DNA Methylation Profiling: The mDIP-Chip Technology. In: Yu, J. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 568. Humana Press.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-938-3

  • Online ISBN: 978-1-59745-280-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics