Skip to main content

Identification of Human Pancreatic Cancer Stem Cells

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 568))

Summary

Emerging evidence suggests that malignant tumors are composed of a small subset of distinct cancer cells, termed “cancer stem cells” (typically less than 5% of total cancer cells based on cell surface marker expression), which have great proliferative potential, as well as more differentiated cancer cells, which have very limited proliferative potential. Data have been provided to support the existence of cancer stem cells in several different types of cancer, including human blood, brain, prostate, ovarian, melanoma, colon, and breast cancers. We have recently reported the identification of a subpopulation of pancreatic cancer cells that express the cell surface markers CD44+CD24+ESA+ (0.2–0.8% of all human pancreatic cancer cells) that function as pancreatic cancer stem cells. The CD44+CD24+ESA+ pancreatic cancer cells are highly tumorigenic and possess the stem cell-like properties of self-renewal and the ability to produce differentiated progeny. Pancreatic cancer stem cells also demonstrate upregulation of molecules important in developmental signaling pathways, including sonic hedgehog and the polycomb gene family member Bmi-1. Of clinical importance, cancer stem cells in several tumor types have shown resistance to standard therapies and may play a role in treatment failure or disease recurrence. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hoyert DL, Heron MP, Murphy SL, Kung HC. (2006) Deaths: final data for 2003. Natl Vital Stat Rep 19: 1–120.

    Google Scholar 

  2. Bonnet D, Dick JE. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 3: 730–737.

    Article  PubMed  CAS  Google Scholar 

  3. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE. (1994) A cell initiating human acute myeloid leukemia after transplantation into SCID mice. Nature 17: 645–648.

    Article  Google Scholar 

  4. Matsui W, Huff CA, Wang Q, et al. (2004) Characterization of clonagenic multiple myeloma cells. Blood 103: 2332–2336.

    Article  PubMed  CAS  Google Scholar 

  5. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100: 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  PubMed  CAS  Google Scholar 

  7. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65(23): 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  8. O’Brien CA, Pollett A, Gallinger S, Dick JE. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123): 106–110.

    Article  PubMed  Google Scholar 

  9. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445(7123):111–115.

    Article  PubMed  CAS  Google Scholar 

  10. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3): 1030–1037.

    Article  PubMed  CAS  Google Scholar 

  11. Li L, Neaves WB. (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66: 4553–4557.

    Article  PubMed  CAS  Google Scholar 

  12. Hahn SA, Seymour AB, Hoque AT, et. al. (1995) Allelotype of pancreatic adenocarcinoma using xenograft enrichment. Cancer Res 55: 4670–4675.

    PubMed  CAS  Google Scholar 

  13. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. (2006) Cancer stem cells – Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19): 9339–9344.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Li, C., Lee, C.J., Simeone, D.M. (2009). Identification of Human Pancreatic Cancer Stem Cells. In: Yu, J. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 568. Humana Press. https://doi.org/10.1007/978-1-59745-280-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-280-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-938-3

  • Online ISBN: 978-1-59745-280-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics