Skip to main content

Arabidopsis Embryogenesis

  • Protocol
Plant Embryogenesis

Part of the book series: Methods In Molecular Biology™ ((MIMB,volume 427))

Summary

Embryogenesis in higher plants consists of two major phases, morphogenesis and maturation. Morphogenesis involves the establishment of the embryo’s body plan, whereas maturation involves cell expansion and accumulation of storage macromolecules to prepare for desiccation, germination and early seedling growth. Arabidopsis mutants showing defects in embryogenesis have provided information for understanding the events that govern embryo formation through molecular, genetic and biochemical analyses. Thus, many of the processes that underlie embryogenesis are beginning to be understood. In this chapter, we focus on genes that play key roles in the morphogenesis phase of Arabidopsis embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berleth T, Chatfield S. Embryogenesis: pattern formation from a single cell. In: Somerville CR, Meyerowitz EM, eds. The Arabidopsis Book. Rockville: American Society of Plant Biologists, 2002:1–22.

    Google Scholar 

  2. Jurgens G. Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 2001;20:3609–16.

    Article  CAS  PubMed  Google Scholar 

  3. Laux T, Wurschum T, Breuninger H. Genetic regulation of embryonic pattern formation. Plant Cell 2004;16:S190–202.

    Article  CAS  PubMed  Google Scholar 

  4. Willemsen V, Scheres B. Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 2004;38:587–614.

    Article  CAS  PubMed  Google Scholar 

  5. Yadegari R, Goldberg RB. Embryogenesis in dicotyledonous plants. In: Larkins BA, Vasil I.K eds. Cellular and Molecular Biology of Plant Seed Development. Dordrecht: Kluwer Academic Publishers, 1997:3–52.

    Google Scholar 

  6. Goldberg RB, de Paiva G, Yadegari R. Plant embryogenesis: zygote to seed. Science 1994;266:605–14.

    Article  CAS  PubMed  Google Scholar 

  7. West MA, Harada JJ. Embryogenesis in higher plants: an overview. Plant Cell 1993;5:1361–9.

    Article  PubMed  Google Scholar 

  8. Yeung EC, Meinke DW. Embryogenesis in angiosperms: development of the suspensor. Plant Cell 1993;5:1371–81.

    Article  PubMed  Google Scholar 

  9. Mansfield SG, Briarty LG. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 1990;69:461–76.

    Article  Google Scholar 

  10. Lu P, Porat P, Nadeau JA, O’Neill SD. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homeobox genes. Plant Cell 1996;8:2155–68.

    Article  CAS  PubMed  Google Scholar 

  11. Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 2004;131:657–68.

    Article  CAS  PubMed  Google Scholar 

  12. Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 2003;426:147–53.

    Article  CAS  PubMed  Google Scholar 

  13. Berleth T, Krogan NT, Scarpella E. Auxin signals – turning genes on and turning cells around. Curr Opin Plant Biol 2004;7:553–63.

    Article  CAS  PubMed  Google Scholar 

  14. Jenik PD, Barton MK. Surge and destroy: the role of auxin in plant embryogenesis. Development 2005;132:3577–85.

    Article  CAS  PubMed  Google Scholar 

  15. Friml J, Benfey P, Benkova E, Bennett M, Berleth T, Geldner N, Grebe M, Heisler M, Hejatko J, Jurgens G, Laux T, Lindsey K, Lukowitz W, Luschnig C, Offringa R, Scheres B, Swarup R, Torres-Ruiz R, Weijers D, Zazimalova E. Apical-basal polarity: why plant cells don’t stand on their heads. Trends Plant Sci 2006;11: 12–14.

    Article  CAS  PubMed  Google Scholar 

  16. Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 2002;108:661–73.

    Article  CAS  PubMed  Google Scholar 

  17. Mayer U, Ruiz RAT, Berleth T, Miseera S, Juurgens G. Mutations affecting body organization in the Arabidopsis embryo. Nature 1991;353:402–7.

    Article  Google Scholar 

  18. Mayer U, Buttner G, Jurgens G. Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 1993;117:149–62.

    Google Scholar 

  19. Geldner N, Friml J, Stierhof Y-D, Jurgens G, Palme K. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 2001;413:425–8.

    Article  CAS  PubMed  Google Scholar 

  20. Geldner N, Anders NWH, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 2003;112: 219–30.

    Google Scholar 

  21. Lukowitz W, Mayer U, Jurgens G. Cytokinesis in the Arabidopsis embryo Involves the syntaxin-related KNOLLE gene product. Cell 1996;84:61–71.

    Article  CAS  PubMed  Google Scholar 

  22. Mansfield SG, Briarty LG, Erni S. Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 1990;69:447–60.

    Article  Google Scholar 

  23. Torres-Ruiz RA, Lohner A, Jurgens G. The GURKE gene is required for normal organization of the apical region in the Arabidopsis embryo. Plant J 1996;10:1005–16.

    Article  CAS  PubMed  Google Scholar 

  24. Kajiwara T, Furutani M, Hibara K-I, Tasaka M. The GURKE gene encoding an acetyl-CoA carboxylase is required for partitioning the embryo apex into three subregions in Arabidopsis. Plant Cell Physiol 2004;45:1122–8.

    Article  CAS  PubMed  Google Scholar 

  25. Long JA, Woody S, Poethig S, Meyerowitz EM, Barton MK. Transformation of shoots into roots in Arabidopsis embryos mutant at the TOPLESS locus. Development 2002;129:2797–806.

    CAS  PubMed  Google Scholar 

  26. Long JA, Ohno C, Smith ZR, Meyerowitz EM. TOPLESS regulates apical embryonic fate in Arabidopsis. Science 2006;312:1520–3.

    Article  CAS  PubMed  Google Scholar 

  27. Barton MK, Poethig RS. Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 1993;119:823–31.

    Google Scholar 

  28. Laux T, Mayer KF, Berger J, Jurgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 1996;122:87–96.

    CAS  PubMed  Google Scholar 

  29. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 1997;9:841–57.

    Article  CAS  PubMed  Google Scholar 

  30. Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development n Arabidopsis. Development 1993;119:397–418.

    CAS  PubMed  Google Scholar 

  31. Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 1995;121:2057–67.

    CAS  Google Scholar 

  32. Kayes JM, Clark SE. CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 1998;125:3843–51.

    CAS  PubMed  Google Scholar 

  33. Mayer KFX, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 1998;95:805–15.

    Article  CAS  PubMed  Google Scholar 

  34. Clark SE. Meristems: start your signaling. Curr Opin Plant Biol 2001;4:28–32.

    Article  CAS  PubMed  Google Scholar 

  35. Fletcher JC. Shoot and floral meristem maintenance in Arabidopsis. Annu Rev Plant Biol 2002;53:45–66.

    Article  CAS  PubMed  Google Scholar 

  36. Long JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 1996;379:66–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lenhard M, Jurgens G, Laux T. The Wuschel and Shootmeristemless genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 2002;129:3195–206.

    CAS  PubMed  Google Scholar 

  38. Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 2000;408:967–71.

    Article  CAS  PubMed  Google Scholar 

  39. Aida M, Ishida T, Tasaka M. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the Cup-Shaped Cotyledon And Shoot Meristemless Genes. Development 1999;126: 1563–70.

    CAS  PubMed  Google Scholar 

  40. Takada S, Hibara K, Ishida T, Tasaka M. The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 2001;128:1127–35.

    CAS  PubMed  Google Scholar 

  41. Vroemen CW, Mordhorst AP, Albrecht C, Kwaaitaal MACJ, de Vries SC. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 2003;15:1563–77.

    Article  CAS  PubMed  Google Scholar 

  42. Treml BS, Winderl S, Radykewicz R, Herz M, Schweizer G, Hutzler P, Glawischnig E, Ruiz RAT. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 2005;132: 4063–74.

    Article  CAS  PubMed  Google Scholar 

  43. Schrick K, Mayer U, Horrichs A, Kuhnt C, Bellini C, Dangl J, Schmidt J, Jurgens G. FACKEL is a sterol C-14 reductase required for organized cell division and expansion in Arabidopsis embryogenesis. Genes Dev 2000;14:1471–84.

    CAS  PubMed  Google Scholar 

  44. Schrick K, Mayer U, Martin G, Bellini C, Kuhnt C, Schmidt J, Jurgens G. Interactions between sterol biosynthesis genes in embryonic development of Arabidopsis. Plant J 2002;31:61–73.

    Article  CAS  PubMed  Google Scholar 

  45. Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K. Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell 2002;14:1017–31.

    Article  CAS  PubMed  Google Scholar 

  46. Topping J, May V, Muskett P, Lindsey K. Mutations in the HYDRA1 gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling morphogenesis. Development 1997;124:4415–24.

    CAS  PubMed  Google Scholar 

  47. Diener AC, Li H, Zhou WX, Whoriskey WJ, Nes WD, Fink GR. STEROL Methyltransferase 1 controls the level of cholesterol in plants. Plant Cell 2000;12:853–70.

    Article  CAS  PubMed  Google Scholar 

  48. Sakurai A, Fujioka S. Studies on biosynthesis of brassinosteroids. Biosci Biotechnol Biochem 1997;61:757–62.

    Article  CAS  PubMed  Google Scholar 

  49. Schrick K, Fujioka S, Takatsuto S, Stierhof YD, Stransky H, Yoshida S, Jurgens G. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J 2004;38:227–43.

    Article  CAS  PubMed  Google Scholar 

  50. Peng L, Kawagoe Y, Hogan P, Delmer D. Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 2002;295:147–50.

    Article  CAS  PubMed  Google Scholar 

  51. Berleth T, Jurgens G. The role of the Monopterous gene in organising the basal body region of the Arabidopsis embryo. Development 1993;118:575–87.

    Google Scholar 

  52. Hamann T, Mayer U, Jurgens G. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 1999;126:1387–95.

    CAS  PubMed  Google Scholar 

  53. Hobbie L, McGovern M, Hurwitz LR, Pierro A, Liu NY, Bandyopadhyay A, Estelle M. The axr6 mutants of Arabidopsis thaliana define a gene involved in auxin response and early development. Development 2000;127:23–32.

    CAS  PubMed  Google Scholar 

  54. Hardtke CS, Berleth T. The Arabidopsis gene Monopteros encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 1998;17:1405–11.

    Article  CAS  PubMed  Google Scholar 

  55. Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 2002;16:1610–5.

    Article  CAS  PubMed  Google Scholar 

  56. Hardtke CS, Ckurshumova W, Vidaurre DP, Singh SA, Stamatiou G, Tiwari SB, Hagen G, Guilfoyle TJ, Berleth T. Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS And NONPHOTOTROPIC HYPOCOTYL 4. Development 2004;131:1089–100.

    Google Scholar 

  57. Weijers D, Benkova E, Jäger KE, Schlereth A, Hamann T, Kientz M, Wilmoth JC, Reed JW, Jürgens G. Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 2005;24:1874–85.

    Article  CAS  PubMed  Google Scholar 

  58. Hellmann H, Hobbie L, Chapman A, Dharmasiri S, Dharmasiri N, Pozo CD, Reinhardt D, Estelle M. Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J 2003;22:3314–25.

    Article  CAS  PubMed  Google Scholar 

  59. Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh Y-S, Amasino R, Scheres B. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 2004;119:109–20.

    Article  CAS  PubMed  Google Scholar 

  60. Sabatini S, Heidstra R, Wildwater M, Scheres B. Scarecrow is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 2003;17:354–8.

    Article  CAS  PubMed  Google Scholar 

  61. Scheres B, Di Laurenzio L, Willemsen V, Hauser MT, Janmaat K, Weisbeek P, Benfey PN. Mutations affecting the radial organisation of the Arabidopsis root display specific defects throughout the embryonic axis. Development 1995;121:53–62.

    CAS  Google Scholar 

  62. Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B. The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 1998;125:521–31.

    CAS  PubMed  Google Scholar 

  63. Blilou I, Frugier F, Folmer S, Serralbo O, Willemsen V, Wolkenfelt H, Eloy NB, Ferreira PCG, Weisbeek P, Scheres B. The Arabidopsis HOBBIT gene encodes a CDC27 homolog that links the plant cell cycle to progression of cell differentiation. Genes Dev 2002;16:2566–75.

    Article  CAS  PubMed  Google Scholar 

  64. Abe M, Takahashi T, Komeda Y. Identification of a cis-regulatory element for L1 layer-specific gene expression, which is targeted by an L1-specific homeodomain protein. Plant J 2002;26:487–94.

    Article  Google Scholar 

  65. Abe M, Katsumata H, Komeda Y, Takahashi T. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 2003;130:635–43.

    Article  CAS  PubMed  Google Scholar 

  66. Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jurgens G. The Arabidopsis KNOLLE protein is a cytokinesis-specific Syntaxin. J Cell Biol 1997;139:1485–93.

    Article  CAS  PubMed  Google Scholar 

  67. Waizenegger I, Lukowitz W, Assaad F, Schwarz H, Jurgens G, Mayer U. The Arabidopsis KNOLLE and KEULE genes interact to promote vesicle fusion during cytokinesis. Curr Biol 2000;10:1371–4.

    Article  CAS  PubMed  Google Scholar 

  68. Vroemen CW, Langeveld S, Mayer U, Ripper G, Jurgens G, Van Kammen A, de Vries SC. Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 1996;8:783–91.

    Article  CAS  PubMed  Google Scholar 

  69. Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 2000;14:2938–43.

    Article  CAS  PubMed  Google Scholar 

  70. Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 2001;409:1060–3.

    Article  CAS  PubMed  Google Scholar 

  71. Di Laurenzio L, Wysocka-Diller J, Malamy J, Pysh L, Helariutta Y, Freshour G, Hahn M, Feldmann K, Benfey P. The Scarecrow gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 1996;86:423–33.

    Article  PubMed  Google Scholar 

  72. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, Sena G, Hauser M, Benfey P. The SHORTROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell 2000;101:555–67.

    Article  CAS  PubMed  Google Scholar 

  73. Wysocka-Diller JW, Helariutta Y, Fukaki H, Malamy JE, Benfey PN. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot. Development 2000;127:595–603.

    CAS  PubMed  Google Scholar 

  74. Nakajima K, Sena G, Nawy T, Benfey PN. Intercellular movement of the putative transcription factor SHR in root patterning. Nature 2001;413:307–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the members of the Harada lab for their helpful comments about this review. Support from NSF and DOE is acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Park, S., Harada, J.J. (2008). Arabidopsis Embryogenesis. In: Suárez, M.F., Bozhkov, P.V. (eds) Plant Embryogenesis. Methods In Molecular Biology™, vol 427. Humana Press. https://doi.org/10.1007/978-1-59745-273-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-273-1_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-931-4

  • Online ISBN: 978-1-59745-273-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics