Analysis of Circadian Leaf Movement Rhythms in Arabidopsis thaliana

  • Kieron D. Edwards
  • Andrew J. Millar
Part of the Methods in Molecular Biology™ book series (MIMB, volume 362)


Arabidopsis thaliana is the model organism for the study of the higher plant circadian clock. The physiological change in position of young leaves and cotyledons in Arabidopsis seedlings reveals an overt circadian rhythm. Measuring these leaf movements provides a simple and reliable assay of the plant circadian clock and, unlike systems based on the firefly luciferase reporter gene, requires no prior genetic manipulation of the plant. As such, leaf movement can be used to measure circadian rhythms in plants lacking luciferase reporter genes, or as an independent measure of the clock in plants that do possess the transgene. The imaging system described in this chapter can also be adapted to measure circadian rhythms in other plant species displaying rhythmic leaf movements.

Key Words

Arabidopsis thaliana biological clock leaf movement cotyledon movement physiological rhythm plant 


  1. 1.
    Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: A model plant for genome analysis. Science 282, 662–666.CrossRefPubMedGoogle Scholar
  2. 2.
    Somerville, C., and Koornneef, M. (2002) A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3, 883–889.CrossRefPubMedGoogle Scholar
  3. 3.
    Yanovsky, M. J., and Kay, S. A. (2001) Signaling networks in the plant circadian system. Curr. Opin. Plant Biol. 4, 429–435.CrossRefPubMedGoogle Scholar
  4. 4.
    Harmer, S. L., Hogenesch, J. B., Straume, M., et al. (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.CrossRefPubMedGoogle Scholar
  5. 5.
    Edwards, K. D., Anderson, P. E., Hall, A., et al. (2006) Flowering locus C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Plant Cell 18, 639–650.CrossRefPubMedGoogle Scholar
  6. 6.
    Millar, A. J., Carré, I. A., Strayer, C. A., Chua, N. H., and Kay, S. A. (1995) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267, 1161–1163.CrossRefPubMedGoogle Scholar
  7. 7.
    Engelmann, W., Simon, K., and Phen, C. J. (1992) Leaf movement rhythms in Arabidopsis thaliana. Zeitschrift fur Naturforschung 47c, 925–928.Google Scholar
  8. 8.
    Dowson-Day, M. J., and Millar, A. J. (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J. 17, 63–71.CrossRefPubMedGoogle Scholar
  9. 9.
    Agosti, R. D., Jouve, L., and Greppin, H. (1997) Computer-assisted measurements of plant growth with linear variable differential transformer (LVDT) sensors. Archives des Sciences 50, 233–244.Google Scholar
  10. 10.
    Somers, D. E., Webb, A. A. R., Pearson, M., and Kay, S. A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494.PubMedGoogle Scholar
  11. 11.
    DeMairan. (1729) Observation botanique. Histoire de l’Academie Royale des Sciences, pp. 35–36.Google Scholar
  12. 12.
    Engelmann, W., and Johnsson, A. (1998) Rhythms in organ movement. In: Biological Rhythms and Photoperiodism in Plants (Lumsden, P. J., and Millar, A. J., eds.), BIOS Scientific, Oxford, UK.Google Scholar
  13. 13.
    Darwin, C. (1981) The Power of Movement in Plants (1895). D. Appleton, New York.Google Scholar
  14. 14.
    Yanovsky, M. J., Izaguirre, M., Wagmaister, J. A., et al. (2000) Phytochrome A resets the circadian clock and delays tuber formation under long days in potato. Plant J. 23, 223–232.CrossRefPubMedGoogle Scholar
  15. 15.
    Salome, P. A., Michael, T. P., Kearns, E. V., Fett-Neto, A. G., Sharrock, R. A., and McClung, C. R. (2002) The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis. Plant Physiol. 129, 1674–1685.CrossRefPubMedGoogle Scholar
  16. 16.
    Plautz, J. D., Straume, M., Stanewsky, R., et al. (1997) Quantitative analysis of Drosophila period gene transcription in living animals. J. Biol. Rhythms 12, 204–217.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Kieron D. Edwards
    • 1
  • Andrew J. Millar
    • 1
    • 2
  1. 1.Institute of Molecular Plant SciencesUniversity of EdinburghEdinburghUK
  2. 2.Interdisciplinary Programme for Cellular RegulationUniversity of WarwickCoventryUK

Personalised recommendations